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ON ZEROS OF THE NUMERATOR AND DENOMINATOR POLYNOMIALS
OF THIELE’S CONTINUED FRACTION

M. M. Pahirya UDC 517.518:519.652

We prove that the polynomials of canonical numerators and denominators of the interpolation and approx-
imation convergents of Thiele’s continued fractions have no common zeros. It is shown that the conver-
gents of Thiele’s continued fraction form a staircase sequence of normal Padé approximants. The region
containing zeros of the denominator polynomial of the convergent of Thiele’s continued fraction is also
determined.

1. Introduction

A function of one real or complex variable can be interpolated by a polynomial, a spline, a Padé approximant,
a continued fraction, etc.

It is known that the first works on the interpolation of functions by polynomials were written by Gregory and
Newton as early as at the end of the 17th century. The subsequent development of the theory of interpolation of
functions by polynomials was connected with the works by Waring, Lagrange, Euler, Chebyshev, Markov, Borel,
Runge, Bernstein, Faber, Marcinkiewicz, and many other mathematicians.

For the first time, the problem of interpolation of functions by continued fractions was studied by Wrónski
in 1811 and 1815–1817 [1, 2]. These works remained unknown for a long time due to the absence of references
to Wrónski’s results in the monographs by Thiele [3] and Nörlund [4], where the problem of interpolation was
thoroughly investigated. The unique reference to Wrónski’s works was made in the book [5] devoted to the history
of continued fractions and Padé approximations.

Despite the fact that the analysis of Thiele interpolation continued fractions was given in the textbooks [6–8]
and monographs [9–12], the number of works devoted to the interpolation by continued fractions and the methods
of decomposition of functions in continued fractions is much smaller than the number of works dealing with the
theory of approximation of functions by polynomials, splines, or Padé approximants. There are numerous unsolved
problems in the theory of approximation by continued fractions. Some of these problems are connected solely with
continued fractions.

In the present paper, we consider the problem of zeros of the canonical numerator and denominator of the
Thiele interpolation continued fraction and Thiele continued fraction. In particular, we prove that the numerator
and denominator polynomials do not have common zeros. We substantiate the fact that the convergents of the
Thiele continued fraction obtained as a result of decomposition of a function in the Thiele continued fraction with
the help of the Thiele formula form a staircase sequence of normal Padé approximants. We also determine the
region of zeros of the denominator polynomial of convergent to the Thiele continued fraction.

2. Continued Fractions

We now present necessary facts from the theory of continued fractions.
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Definition 1 [13]. An infinite continued fraction is a triple
⇥{ak}11 , {bk}10 , {Dk}10

⇤

of sequences, where
the elements b0, ak, bk, ak 6= 0, k 2 N, are complex numbers and D0, Dk, k 2 N, are elements of the extended
complex plane ¯C = C [ {1} specified as follows: If a sequence of Möbius transformations

s0(w) := b0 + w, sk(w) := ak/(bk + w), k 2 N,

is given, then

Dk := s0 ◦ s1 ◦ . . . ◦ sk(0).

It follows from the definition that a finite continued fraction Dn has the form

Dn = b0 +
a1

b1 +
a2

b2 + . . .
+

an

bn

,

which can be rewritten in the concise form as follows:

Dn = b0 +

n

K
k=1

ak
bk

= b0 +
a1

b1+

a2

b2 + · · ·+
an

bn
. (1)

Similarly, an infinite continued fraction has the following concise form

D = b0 +

1

K
k=1

ak
bk

= b0 +
a1

b1+

a2

b2 + · · ·+
ak

bk + · · · . (2)

The finite continued fraction (1) is called the n th convergent and the n th approximation of the continued
fraction (2). A sequence of continued fractions {Dn} is associated with sequences of complex numbers {Pn}
and {Qn} given by the following system of linear difference equations of the second order [9]:

Q−1 = 0, Q0 = P−1 = 1, P0 = b0,

Pn = bnPn−1 + anPn−2, Qn = bnQn−1 + anQn−2, n 2 N.

The numbers Pn and Qn are called, respectively, the n th canonical numerator and the n th canonical denom-
inator of convergent (1), i.e., Dn = Pn/Qn. The canonical numerators and denominators of the convergents Dn

and Dn−1 satisfy the determinant formula [9]

PnQn−1 − Pn−1Qn = (−1)

n−1
n
Y

i=1

ai. (3)

The continued fraction (1) can be also represented in the form of the ratio of two continuants.
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Definition 2 [14]. A determinant of the form

Hhii
n =

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

bi ai+1 0 0 . . . 0 0

−1 bi+1 ai+2 0 . . . 0 0

0 −1 bi+2 ai+3 . . . 0 0

0 0 −1 bi+3 . . . 0 0

...
...

...
...

. . .
...

...

0 0 0 0 . . . bn−1 an

0 0 0 0 . . . −1 bn

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

, i = 0, n, n 2 N,

is called a continuant and can be represented in the following concise form:

Hhii
n = K

 

ai+1, ai+2, . . . , an−1, an

bi, bi+1, bi+2, . . . , bn−1, bn

!

.

It is known [15] that the relation

Dn =

Pn

Qn
=

Hh0i
n

Hh1i
n

(4)

is true. A continuant has the following property:

Theorem 1 [16]. If an element ak of the continuant Hhii
n , where i < k  n, is equal to zero and the other

elements of Hhii
n are different from zero, then

Hhii
n = Hhki

n · Hhii
k−1.

3. Zeros of the Numerator and Denominator Polynomials of the Thiele Interpolation Continued Fraction

Assume that a function f is given on a compact set Z ⇢ C. On the set of interpolation nodes Z =

�

zi :
zi 2 Z, zi 6= zj , i 6= j, i, j = 0, n

 

, the function takes values wi = f(zi), i = 0, n.

The function f on Z can be approximated by a Thiele interpolation continued fraction of the form [3, 4]

Dn(z) =
Pn(z)

Qn(z)
= b0 +

n

K
i=1

z − zi−1

bi
, bi 2 C, i = 0, n. (5)

The coefficients bi, i = 0, n, of the Thiele interpolation continued fraction are determined either from the
interpolation condition Dn(zi) = wi, where i = 0, n, or in terms of the inverted divided differences, or according
to the recurrence relation in the form of a continued fraction [4, 17].

It is known that the numerator Pn(z) and denominator Qn(z) of the Thiele interpolation continued frac-
tion are polynomials whose degrees satisfy the inequalities degPn(z)  [(n+ 1)/2] and degQn(z)  [n/2].
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The polynomials Pn(z) and Qn(z) are expressed in terms of the elements b0, bi, z − zi−1, i = 1, n, by the
Euler–Minding formula [17, 18]:

Pn(z) = B
[n]
0

 

1 +

n−1
X

i=0

Xi(z) +
n−3
X

i1=0

Xi1(z)
n−1
X

i2=i1+2

Xi2(z) +
n−5
X

i1=0

Xi1(z)

n−3
X

i2=i1+2

Xi2(z)

⇥
n−1
X

i3=i2+2

Xi3(z) + . . .+
n+1−2l
X

i1=0

Xi1(z)
n+3−2l
X

i2=i1+2

Xi2(z) . . .
n−1
X

il=il−1+2

Xil(z)

!

, (6)

Qn(z) = B
[n]
1

 

1 +

n−1
X

i=1

Xi(z) +
n−3
X

i1=1

Xi1(z)
n−1
X

i2=i1+2

Xi2(z) +
n−5
X

i1=1

Xi1(z)
n−3
X

i2=i1+2

Xi2(z)

⇥
n−1
X

i3=i2+2

Xi3(z) + . . .+

n+1−2m
X

i1=1

Xi1(z)

n+3−2m
X

i2=i1+2

Xi2(z) . . .

n−1
X

im=im−1+2

Xim(z)

◆

, (7)

where

l =



n+ 1

2

�

, m =

hn

2

i

, Xi =
z − zi

bi bi+1
, i = 0, n− 1, B

[n]
k =

n
Y

i=k

bi, k = 0, 1.

We introduce the continuant

T
hii
j (z) = K

 

z − zi, z − zi+1, . . . , z − zj−1

bi, bi+1, bi+2, . . . , bj

!

, i < j. (8)

Then the Thiele interpolation continued fraction (5) is expressed in the form (4) of the ratio of continuants (8)
as follows:

Dn(z) =
T

h0i
n (z)

T
h1i
n (z)

.

Theorem 2. If, for some value n 2 N, the coefficients of the Thiele interpolation continued fraction (5) are
finite and not equal to zero and the function f takes nonzero values at the nodes, i.e., f(zi) 6= 0, i = 0, n, then the
polynomials of the numerator Pn(z) and denominator Qn(z) do not have common zeros, i.e., Pn(z) and Qn(z)

are coprime polynomials over the field of complex numbers and Pn(z)/Qn(z) is an irreducible rational fraction.

Proof. We proceed by induction. For n = 1, the polynomials in the numerator P1(z) = b0b1 + z − z0 and
denominator Q1(z) = b1 do not have common zeroes. For n = 2, we get

P2(z) = b0b1b2 + b2(z − z0) + b0(z − z1) and Q2(z) = b1b2 + z − z1.

In view of the determinant formula (3), we get

P2(z)Q1(z)− P1(z)Q2(z) = −(z − z0)(z − z1).
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Since P1(z) and Q1(z) do not have common zeros, the nodes z0 or z1 can be common zeros of the polynomials
P2(z) and Q2(z). It is easy to see that z0 and z1 are not common zeros of P2(z) and Q2(z).

Assume that, for n = 0, k − 1, the polynomials Pn(z) and Qn(z) do not have common zeroes. Thus,
for n = k, it follows from the determinant formula that

Pk(z)Qk−1(z)− Pk−1(z)Qk(z) = (−1)

k−1
(z − z0)(z − z1) . . . (z − zk−1).

By the induction assumption, the polynomials Pk−1(z) and Qk−1(z) do not have common zeros. Thus, only
one interpolation node z0, z1, . . . , zk−1 can be the common zero of the polynomials Pk(z) and Qk(z). Let zs,
0  s  k − 1, be one of the nodes. Then the continuants Th0i

k (zs) and T
h1i
k (zs) are equal to

T
h0i
k (zs) = K

 

zs − z0, . . . , zs − zs−1, 0, zs − zs+1, . . . , zs − zk−1

b0, b1, . . . , bs, bs+1, bs+2, . . . , bk

!

,

T
h1i
k (zs) = K

 

zs − z1, . . . , zs − zs−1, 0, zs − zs+1, . . . , zs − zk−1

b1, b2, . . . , bs, bs+1, bs+2, . . . , bk

!

.

By Theorem 1, we obtain

T
h0i
k (zs) = T

hsi
k (zs)T

h0i
s−1(zs) and T

h1i
k (zs) = T

hsi
k (zs)T

h1i
s−1(zs).

This implies that

Pk(zs)

Qk(zs)
=

Ps−1(zs)

Qs−1(zs)
.

By the the induction assumption, the polynomials Pt(z) and Qt(z), t = 0, k − 1, do not have common zeros.
Thus, the node zs is not a common zero of Pk(z) and Qk(z). Since zs is arbitrary, we conclude that the indicated
polynomials do not have common zeros. Hence, the theorem remains true for n = k.

4. Zeros of the Thiele Continued Fraction

It is known [3, 4] that, in the limit case, the Thiele formula, which is an analog of the Taylor formula in
the theory of continued fractions, can be obtained from the Thiele interpolation continued fraction (5). If the
interpolation nodes z0, z1, . . . , zk ! z⇤, where z⇤ 2 Z, then the limit value ⇢k[z0, z1, . . . , zk; f ] of the inverse
difference of order k is called the inverse Thiele derivative of order k for the function f at the point z⇤ on the
compact set Z and denoted by (k)f(z⇤), i.e.,

(k)f(z⇤) = lim

z0,z1,...,zk!z⇤
⇢k[z0, z1, . . . , zk; f ], k 2 N.

The inverse Thiele derivatives are given by the following recurrence relations [3]:

(k)f(z⇤) = k · (1)
�

(k−1)f(z⇤)
�

+

(k−2)f(z⇤), k 2 N2 = N\{1},

(0)f(z⇤) = f(z⇤),
(1)f(z⇤) = 1/f 0

(z⇤).
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If a function f has the inverse Thiele derivatives up to the n th order, inclusively, in a certain neighborhood of
the point z⇤, then, by the Thiele formula, it can be represented in the form

f(z) = b0(z⇤; f) +
z − z⇤
b1(z⇤; f)

+

z − z⇤
b2(z⇤; f)

+ . . .+
z − z⇤

bn(z⇤; f)
+

z − z⇤
Rn(z; f)

,

where Rn(z; f) is the remainder of the continued fraction. The coefficients bi(z⇤; f) are expressed in terms of the
inverse Thiele derivatives as follows:

b0(z⇤; f) = f(z⇤), b1(z⇤; f) =
(1)f(z⇤),

bn(z⇤; f) =
(n)f(z⇤)− (n−2)f(z⇤), n 2 N2.

If a function f has infinitely many nonzero inverse Thiele derivatives in a certain neighborhood of the
point z = z⇤, then we get the following decomposition of this function in a formal Thiele continued fraction:

f(z) = b0(z⇤; f) +
1

K
k=1

z − z⇤
bk(z⇤; f)

. (9)

The properties of the inverse Thiele derivatives, some examples of decompositions of the functions in contin-
ued fractions with the help of the Thiele formula, and the substantiation of the domains of convergence and uniform
convergence of the obtained decompositions can be found in [3, 4, 10, 17, 19].

We now represent the convergent Dn(z; z⇤, f) of the Thiele continued fraction (9) in the form

Dn(z; z⇤, f) =
Pn(z; z⇤, f)

Qn(z; z⇤, f)
= b0(z⇤; f) +

n

K
k=1

z − z⇤
bk(z⇤; f)

, (10)

where the polynomials in the numerator Pn(z; z⇤, f) and in the denominator Qn(z; z⇤, f) can be expressed via
the elements bi(z⇤; f), i = 0, n, z − z⇤ of the Thiele continued fraction (10) by the Euler–Minding formula (6),
(7) as follows:

Pn(z; z⇤, f) = B
[n]
0

 

1 + (z − z⇤)
n−1
X

i=0

Ai + (z − z⇤)
2
n−3
X

i1=0

Ai1

n−1
X

i2=i1+2

Ai2

+ (z − z⇤)
3
n−5
X

i1=0

Ai1

n−3
X

i2=i1+2

Ai2

n−1
X

i3=i2+2

Ai3 + . . .

+ (z − z⇤)
l
n+1−2l
X

i1=0

Ai1

n+3−2l
X

i2=i1+2

Ai2 . . .
n−1
X

il=il−1+2

Ail

!

, (11)

Qn(z; z⇤, f) = B
[n]
1

 

1 + (z − z⇤)
n−1
X

i=1

Ai + (z − z⇤)
2
n−3
X

i1=1

Ai1

n−1
X

i2=i1+2

Ai2
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+ (z − z⇤)
3
n−5
X

i1=1

Ai1

n−3
X

i2=i1+2

Ai2

n−1
X

i3=i2+2

Ai3 + . . .

+ (z − z⇤)
m

n+1−2m
X

i1=1

Ai1

n+3−2m
X

i2=i1+2

Ai2 . . .

n−1
X

im=im−1+2

Aim

!

, (12)

where

Ai =
1

bi(z⇤; f) bi+1(z⇤; f)
, i = 0, n− 1, B

[n]
l =

n
Y

i=l

bi(z⇤; f), l =



n+ 1

2

�

, m =

hn

2

i

.

Theorem 3. If the coefficients bk = bk(z⇤; f), k = 1, n, of convergent (10) are finite and nonzero and,
moreover, f(z⇤) 6= 0, then the canonical numerator Pn(z; z⇤, f) and the canonical denominator Qn(z; z⇤, f)

do not have common zeros, i.e., Pn(z; z⇤, f) and Qn(z; z⇤, f) are coprime polynomials over the field of complex
numbers and Pn(z; z⇤, f)/Qn(z; z⇤, f) is an irreducible rational function.

Proof. We proceed by induction. For n = 1, we see that the polynomials P1(z; z⇤, f) = b0b1 + z − z⇤ and
Q1(z; z⇤, f) = b1 do not have common zeros. Further, if n = 2, then

P2(z; z⇤, f) = b0b1b2 + (b0 + b2)(z − z⇤)

and Q2(z; z⇤, f) = b1b2 + z − z⇤. According to the determinant formula (3), we find

P2(z; z⇤, f)Q1(z; z⇤, f)− P1(z; z⇤, f)Q2(z; z⇤, f) = −(z − z⇤)
2.

Since the polynomials P1(z; z⇤, f) and Q1(z; z⇤, f) do not have common zeros, we conclude that only z⇤ can
be a common zero of P2(z; z⇤, f) and Q2(z; z⇤, f). However, z⇤ is a zero neither for P2(z; z⇤, f), nor for
Q2(z; z⇤, f). Thus, the theorem is true for n = 1, 2.

Assume that the theorem is true for n = k − 1. For n = k, the determinant formula takes the form

Pk(z; z⇤, f)Qk−1(z; z⇤, f)− Pk−1(z; z⇤, f)Qk(z; z⇤, f) = (−1)

k−1
(z − z⇤)

k.

By the induction assumption, Pk−1(z; z⇤, f) and Qk−1(z; z⇤, f) do not have common zeros. Only z⇤ can be
a common zero of Pk(z; z⇤, f) and Qk(z; z⇤, f).

It follows from relations (11) and (12) that Pk(z⇤; z⇤, f) = B
[k]
0 and Qk(z⇤; z⇤, f) = B

[k]
1 . Thus, z⇤ is not

a zero of polynomials in the numerator Pk(z; z⇤, f) and in the denominator Qk(z; z⇤, f). Hence, the theorem
remains true for n = k.

Remark 1. In the monograph [20], a similar statement was proved for the case of continued RIT-fractions.

5. Sequences of Padé Approximants for the Thiele Continued Fraction

It is known [21] that if a function f is given by a formal power series

f(z) =

1
X

i=0

ciz
i, (13)
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then the Padé approximant [L/M ]f of the function f is defined as an irreducible rational function

R[L/M ]
(z) = P [L/M ]

(z)/Q[L/M ]
(z),

where Q[L/M ]
(0) = 1, satisfying the relation

R[L/M ]
(z) = f(z) +O

�

zL+M+1
�

.

A two-dimensional array of rational functions
�

R[M/L]
(z), L,M 2 N[ {0} is called the Padé table for the

formal power series (13). A Padé approximant [L,M ]f is called normal if

degP [L/M ]
(z) = L and degQ[L/M ]

(z) = M.

We rewrite (11) and (12) in the form

Pn(z; z⇤, f)(z) = pl(w) = wl
+ a1w

l−1
+ . . .+ al−sw

s
+ . . .+ al−1w + al, (14)

Qn(z; z⇤, f)(z) = qm(w) = wm
+ b1w

m−1
+ . . .+ bm−kw

k
+ . . .+ bm−1w + bm, (15)

where

al = B
[n]
0 , al−s = B

[n]
0

n+1−2s
X

i1=0

Ai1

n+3−2s
X

i2=i1+2

Ai2 . . .

n−1
X

is=is−1+2

Ais , s = 1, l − 1, l =



n+ 1

2

�

,

bm = B
[n]
1 , bm−k = B

[n]
1

n+1−2k
X

i1=1

Ai1

n+3−2k
X

i2=i1+2

Ai2 . . .

n−1
X

ik=ik−1+2

Aik , k = 1,m− 1, m =

hn

2

i

, (16)

w = z − z⇤, Ai = 1/bibi+1.

Theorem 4. If, for each value n 2 N, the coefficients bk, k = 1, n, of the continued fraction (10) take finite
nonzero values and b0 = f(z⇤) 6= 0, then the sequence of continued fractions {Dn(z; z⇤, f)} form a staircase
sequence of normal Padé approximants

n

R[0/0]
(w), R[1/0]

(w), R[1/1]
(w), R[2/1]

(w), R[2/2]
(w), . . .

o

of the function f.

Proof. It follows from (14) and (15) that

Dn(z; z⇤, f) = R[l/m]
(w).

By Theorem 3, the polynomials pl(w) and qm(w) do not have common zeros and, hence,

R[l/m]
(w) = pl(w)/qm(w)
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is an irreducible rational function. It is easy to see that

qm(0) = B
[n]
1 6= 0.

We divide the polynomials pl(w) and qm(w) by B
[n]
1 . Hence, R[l/m]

(w) = p̄l(w)/q̄m(w) is an irreducible
function and q̄m(0) = 1. It follows from (14) and (15) that deg pl(w) = l and deg qm(w) = m. In [22], it was
proved that the Thiele continued fraction (9) also has the formal power series (13). Therefore,

R[l/m]
(z − z⇤) = f(z) +O(zl+m+1

).

Thus, the sequence
�

R[l/m]
(w) = Dn(z; z⇤, f)

 

is a sequence of normal Padé approximants of the function f.

6. Domain of Zeros for the Denominator of the Thiele Continued Fraction

Consider a domain of the complex plane that contains all zeros of the canonical denominator Qn(z; z⇤, f) of
the Thiele continued fraction (10). We use the following statement:

Proposition 1 [23]. Suppose that pn(z) = zn + c1z
n−1

+ . . . + cn−1z + cn is a polynomial with nonzero
coefficients and that z̄i, i = 1, n, are zeros of this polynomial. Then

max

1in
|z̄i| = r0  max

⇢

2|c1|, 2
�

�

�

�

c2
c1

�

�

�

�

, 2

�

�

�

�

c3
c2

�

�

�

�

, . . . , 2

�

�

�

�

cn−1

cn−2

�

�

�

�

,

�

�

�

�

cn
cn−1

�

�

�

�

�

. (17)

Theorem 5. If the coefficients bi = bi(z⇤; f), i = 1, n, of the Thiele continued fraction (10) are nonzero,
then the zeros of the canonical denominator Qn(z; z⇤, f)(z) of the Thiele continued fraction for n > 4 lie in the
disk of radius r1 centered at the point z⇤, where

max

1im
|z̄i − z⇤| = r1  max

⇢

2(n− 1)(b⇤)n−2,
(n− 2)(n− 3)

(n− 1) b2⇤
⇢

�

,

b⇤ = max

1in
|bi|, b⇤ = min

1in
|bi|, ⇢ =

8

>

<

>

:

(b⇤/b⇤)
n−4 for b⇤/b⇤ ≥ 1,

(b⇤/b⇤)
n−2m for b⇤/b⇤ < 1.

Proof. According to (15), the canonical denominator

Qn(z; z⇤, f)(z) = qm(w)

is a polynomial of degree m with leading coefficient equal to one. The coefficients bi, i = 1,m, of the polyno-
mial qm(w) are not equal to zero. According to Proposition 1, the roots of this polynomial wi, i = 1,m, satisfy

inequality (17). If follows from (16) (see [24, 25]) that the coefficient bm−k is the sum of
✓

n− k

k

◆

products of

n− 2k factors Ai1Ai2 . . . Ain−2k
.

We have

|c1|  (n− 1)(b⇤)n−2,

�

�

�

�

ck
ck−1

�

�

�

�

 (n+ 2− 2k)(n+ 1− 2k)

k(n+ 1− k) b2⇤

✓

b⇤

b⇤

◆n−2k

, k = 2,m.
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By using (17), we get

r1  max

⇢

2|c1|, 2
�

�

�

�

c2
c1

�

�

�

�

, 2

�

�

�

�

c3
c2

�

�

�

�

, . . . , 2

�

�

�

�

cm−1

cm−2

�

�

�

�

,

�

�

�

�

cm
cm−1

�

�

�

�

�

 max

(

2(n− 1)(b⇤)n−2,
2(n− 2)(n− 3)

2(n− 1) b2⇤

✓

b⇤

b⇤

◆n−4

,
2(n− 4)(n− 5)

3(n− 2) b2⇤

✓

b⇤

b⇤

◆n−6

, . . . ,

2(n+ 4− 2m)(n+ 3− 2m)

(m− 1)(n+ 2−m) b2⇤

✓

b⇤

b⇤

◆n+2−2m

,
(n+ 2− 2m)(n+ 1− 2m)

m(n+ 1−m) b2⇤

✓

b⇤

b⇤

◆n−2m
)

.

Let n be fixed. We consider an auxiliary function

g(x) =
(n+ 1− 2x)(n+ 2− 2x)

x(n+ 1− x)
, x 2 R = [2;m].

The derivative of the function g has the form

g0(x) = −2x2 − (2n2
+ 6n+ 4)x+ n3

+ 4n2
+ 5n+ 2

x2(n+ 1− x)2
.

On the segment R, the denominator takes only positive values. The numerator is equal to zero if

x1 =
(n+ 1)(n+ 2−p

n2
+ 2n)

2

, x2 =
(n+ 1)(n+ 2 +

p
n2

+ 2n)

2

.

Since (n2
+2n) > n2, we have x1 < n+1. Thus, g0(x) < 0 for x 2 R, and the function g(x) monotonically

decreases on R and takes the maximum value for x = 2.

By using (17), we get

r1  max

⇢

2|c1|, 2
�

�

�

�

c2
c1

�

�

�

�

, . . . , 2

�

�

�

�

cm−1

cm−2

�

�

�

�

,

�

�

�

�

cm
cm−1

�

�

�

�

�

 max

⇢

2(n− 1) (b⇤)n−2 ,
(n− 2)(n− 3)

(n− 1) b2⇤
⇢

�

.

Remark 2. The zeros of the canonical denominator Qn(z; z⇤, f) for n = 2, 3, 4 can be found directly.
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P. Didot L’Aine, Paris (1815–1817).
3. T. N. Thiele, Interpolationsprechnung, Commisission von B. G. Teubner, Leipzig (1909).
4. N. E. Nörlund, Vorlesungen über Differenzenrechnung, Springer, Berlin (1924).
5. C. Brezinski, History of Continued Fractions and Padé Approximants, Springer Science & Business Media (2012).
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