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Continued fraction representation of the generating function
of Bernoulli polynomials
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Abstract. Continued fraction and quasi-reciprocal continued fraction expansions of the generating
function of Bernoulli numbers have been obtained. The convergence and uniform convergence of continued
fraction expansions have been proved. Representations of the generating function of Bernoulli polynomials
in the form of the product of three continued fractions, as well as the product of three quasi-reciprocal
continued fractions, have been found.
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1. Introduction

The function of a complex variable in the vicinity of a certain point can be expanded in a power
series [1], approximated by Padé approximants [2, 3], and represented by a continued fraction [4].

There are several ways to expand functions in a continued fraction. Historically, the first of them
is related to finding the solution of the Riccati differential equation in the form of an infinite continued
fraction [5]. The function expansions are obtained from the representation of the ratio between hyper-
geometric functions via a continued fraction. If the expansion of a function in a formal power series in
the vicinity of a certain point is known, then the determination of the coefficient corresponding to the
formal power series of a regular C-fraction implies the calculation of four Hankel determinants formed
from the coefficients of the formal series [6].

An analogous of the Taylor formula in the theory of continued fractions is the Thiele formula [7,8].
The coefficients of function expansion in the continued fraction are determined by calculating the
reciprocal Thiele derivatives. If the general formula for the coefficients of function expansion in a
continued fraction is found, the regions of convergence and uniform convergence of continued fractions,
as well as a priori and a posteriori estimates are determined. The reciprocal derivatives of the 2nd
type and the methods of function expansion in quasi-reciprocal continued fractions were considered
in [9]. The expansions of the generating functions of the Catalan, Motzkin, Euler, and other numbers
in Jacobi continued fractions (J-fractions) and Stieltjes continued fractions (S-fractions) were studied
in work [10]. The work [11] was devoted to the expansion of the generating functions of the generalized
Bernoulli, Cauchy, and Euler numbers in continued T-fractions.

In this paper, the expansions of the generating functions of the Bernoulli numbers and the Bernoulli
polynomials in the Thiele continued fractions, regular C-fractions, and quasi-reciprocal continued frac-
tions are proposed.
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2. Formulation of the problem. Introductory concepts

It is known [12] that b(z) = z/(ez − 1) is the generating function of Bernoulli numbers Bn, n ∈
N0 = N ∪ {0}, i.e.,

b(z) =

∞∑
n=0

Bn
zn

n!
, z ∈ C. (2.1)

In turn, B(z, x) = zexz/(ez − 1) is the generating function of Bernoulli polynomials, i.e.,

B(z, x) =

∞∑
n=0

Bn(x)
zn

n!
, x ∈ R. (2.2)

Power series (2.1) and (2.2) converge for all |z| < 2π. At the same time, the function b is defined in
the domain G = C\{2πki, k ∈ Z\{0}}, whereas the function B in the domain G = G × R. The aim
of this work is to obtain the expansions of the functions b and B in continued fractions the converge
to functions in the domains G and G, respectively.

Let b0, ak ̸= 0, bk, k ∈ N, be numbers, functions, and so forth. The infinite continued fraction

D = b0 +
a1

b1 +
a2

b2 + . . .
+

an

bn + . . .
can be briefly written in the form

D = b0 +

∞

k=1

ak
bk

= b0 +
a1

b1+

a2

b2+ · · ·+
ak

bk + · · ·
= b0 +K(ak/bk). (2.3)

Analogously, the n-th approximant, i.e., the n-th approximation Dn, n ≥ 1, of the infinite continued
fraction D is briefly written as follows:

Dn = b0 +

n

k=1

ak
bk

= b0 +
a1

b1+ · · ·+
an

bn
= b0 +Kn

k=1(ak/bk), D0 = b0.

Definition 2.1. The continued fractions b0 +K(ak/bk) and d0 +K(ck/dk) are said to be equivalent
if the sequences of their approximants coincide, i.e., b0 +Kn

k=1(ak/bk) = d0 +Kn
k=1(ck/dk), n ≥ 0.

Theorem 2.1. [6] The continued fractions b0+K(ak/bk) and d0+K(ck/dk) are equivalent if and only
if there is a sequence of such numbers {rk : r0 = 1, rk ̸= 0, k ∈ N} for which the following relations
hold: d0 = b0, ck = rk−1rkak, dk = rkbk, k ∈ N.

3. Thiele continued fraction. Regular C-fraction

Let the function f be analytic in the domain K ⊂ C. As (k)f(z∗), denote the reciprocal Thiele
derivative of the k-th order of the function f at the point z∗ ∈ K. The reciprocal Thiele derivatives of
the function f are determined using the recurrent formulas [7]

(k)f(z∗) = k · (1)((k−1)f(z∗)) +
(k−2) f(z∗),

(1)f(z∗) = 1/f ′(z∗),
(0)f(z∗) = f(z∗), k ∈ N2 = N\{1}.
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Theorem 3.1. [13] If the function f is analytic in the domain K ⊂ C, then the reciprocal Thiele
derivatives of the function f at the point z∗ ∈ K are determined as follows:

(2k)f(z∗) =
H

(0)
k+1(z∗)

H
(2)
k (z∗)

, (2k−1)f(z∗) =
H

(3)
k−1(z∗)

H
(1)
k (z∗)

, k ∈ N,

where the Hankel determinants H
(m)
k (z∗), k ≥ 1, equal

H
(m)
0 (z∗) = 1, H

(m)
k (z∗) =

∣∣∣∣∣∣∣∣∣
cm cm+1 . . . cm+k−1

cm+1 cm+2 . . . cm+k
...

...
. . .

...
cm+k−1 cm+k . . . cm+2k−2

∣∣∣∣∣∣∣∣∣ ̸= 0,

cm = f (m)(z∗)/m! if m ≥ 0, and cm = 0 if m < 0.

It is known [7] that if C = const, then

(2n)(Cf(z)) = C · (2n)f(z), (2n+1)(Cf(z)) = 1
C · (2n+1)f(z), n ∈ N0. (3.1)

Theorem 3.2. [14] Let the function f have reciprocal Thiele derivatives up to the n-th order inclusive
and C = const. Then, for k = 0, [n/2],

(2k)f(Cz) = (2k)f(v)
∣∣
v=Cz

, (2k−1)f(Cz) = 1
C · (2k−1)f(v)

∣∣
v=Cz

. (3.2)

If there exist reciprocal Thiele derivatives (n)f(z), n ≥ 1, in the vicinity of the point z∗ ∈ K, then
the function f(z) can be expanded in this vicinity in the Thiele continued fraction (TCF) of the form

f(z) = b0(z∗) +

∞

k=1

z − z∗
bk(z∗)

. (3.3)

The coefficients of TCF are determined via the reciprocal Thiele derivatives of the function f using
the recurrent formula ( [7]),

b0 = f(z∗), b1 =
(1)f(z∗), bk = (k)f(z∗)− (k−2)f(z∗), k ∈ N2. (3.4)

The TCF (3.3) can be written in the form of an equivalent continued fraction with the partial
denominators equal to unity,

f(x) = a0(z∗) +
∞

k=1

ak(z∗)(z − z∗)

1
. (3.5)

The coefficients of continued fraction (3.5) are determined via the reciprocal Thiele derivatives at the
point z∗ as follows:

a0(z∗) = f(z∗), a1(z∗) =
1

(1)f(z∗)
,

ak(z∗) =
1

k · (k − 1) · (1)((k−1)f(z∗)) · (1)((k)f(z∗))
, k ∈ N2.

(3.6)

It was proved (see [15]) that the continued fraction (3.5) coincides with the regular C-fraction (RCF)
corresponding to the formal power series. Whence it follows that the TCF also corresponds to the
formal power series.
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Theorem 3.3. [6,9] Let the function f have an expansion in RCF (3.5) with lim
n→∞

an = 0 and an ̸= 0

in the vicinity of the point z∗ ∈ K, then (A) the RCF coneverges to function f ; (B) the RCF converges
uniformly on an arbitrary compact set K ⊂ K that does not contain the poles of the function f ; and
(C) the function f is holomorphic at the point z∗.

4. Expansion of the generating function of Bernoulli numbers in a continued
fraction

An expansion of the function b in a continued T-fraction of the form

b(z) = 1− z

2 + z −
2z

3 + z − · · · −
nz

n+ 1 + z − · · ·

was obtained in paper [11]. We rewrite the function b in the form

b(z) = z/h(z), where h(z) = ez − 1. (4.1)

Let us expand the auxiliary function h in TCF (3.3) in the vicinity of the point z∗ ∈ G. It is easy to
see that the reciprocal Thiele derivatives of the function h are

(4k)h(z) = ez − 1, (4k+1)h(z) = (2k + 1)e−z, (4k+2)h(z) = −ez − 1,

(4k+3)h(z) = −2(k + 1)e−z, k ∈ N0.

The expansion coefficients of the function h in TCF in the vicinity of the point z∗ acquire the values

b0(z∗) = ez∗ − 1, b2k−1(z∗) = (−1)k+1(2k − 1)e−z∗ ,

b2k(z∗) = (−1)k2ez∗ , k ∈ N.

Substituting them into (3.3), we obtain

h(z) = ez∗ − 1 +
z − z∗
e−z∗ +

z − z∗
−2ez∗ +

z − z∗
−3e−z∗ +

z − z∗
2ez∗ +

z − z∗
5e−z∗ +

+

z − z∗
−2ez∗ + · · ·+

z − z∗
(−1)n−1(2n− 1)e−z∗ +

z − z∗
(−1)n2ez∗ + · · ·

. (4.2)

By performing in the continued fraction (4.2) equivalent transformations, when r0 = 1, r2k−1 = ez∗ ,
and r2k = e−z∗ , we get the function expansion

h(z) = ez∗ − 1 +
ez∗(z − z∗)

1 +

z − z∗
−2 +

z − z∗
−3 +

z − z∗
2 +

z − z∗
5 +

+

z − z∗
−2 +

z − z∗
−7 + · · ·+

z − z∗
(−1)k−1(2k − 1) +

z − z∗
(−1)k2 + · · ·

. (4.3)

Substitute (4.3) into (4.1). Then the expansion of the generating function b in a continued fraction in
the vicinity of the point z∗ looks like

b(z) =
z

ez∗ − 1 +

ez∗(z − z∗)

1 +

z − z∗
−2 +

z − z∗
−3 +

z − z∗
2 +

z − z∗
5 +

+

z − z∗
−2 +

z − z∗
−7 + · · ·+

z − z∗
(−1)k−1(2k − 1) +

z − z∗
(−1)k2 + · · ·

. (4.4)
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According to (3.6), the coefficients of the equivalent RCF equal

a0(z∗) = ez∗ − 1, a1(z∗) = ez∗ , a2k(z∗) =
−1

2(2k − 1)
,

a2k+1(z∗) =
1

2(2k + 1)
, k ∈ N.

The expansion of the function h in the RCF in the vicinity of the point z∗ is

h(z) = ez∗ − 1 +
ez∗(z − z∗)

1 +

−1
2(z − z∗)

1 +

1
6(z − z∗)

1 +

−1
6(z − z∗)

1 +

+

1
10(z − z∗)

1 + · · ·+

−1
2(2k−1)(z − z∗)

1 +

1
2(2k+1)(z − z∗)

1 + · · ·
.

So we obtain another expansion of the generating function b in a continued fraction,

b(z) =
z

ez∗ − 1 +

ez∗(z − z∗)

1 +

−1
2(z − z∗)

1 +

1
6(z − z∗)

1 +

+

−1
6(z − z∗)

1 + · · ·+

−1
2(2k−1)(z − z∗)

1 +

1
2(2k+1)(z − z∗)

1 + · · ·
. (4.5)

Since ak ̸= 0, k ∈ N0, and lim
k→∞

ak = 0, then, by Theorem 3.3, the continued fraction (4.5) and the

equivalent continued fraction (4.4) converge to the generating function b, and the continued fractions
converge uniformly on an arbitrary compact set K ⊂ G.

The value of ez∗ can be found with a required accuracy, e.g., from the expansion of the Lagrange
function ez in a regular C-fraction [5].

5. Quasi-reciprocal continued fractions

A function f analytical in the domain K can be expanded in the vicinity of the point z∗ ∈ K in a
continued fraction of the form

f =

(
d0(z∗) +

∞

k=1

z − z∗

dk(z∗)

)−1

, (5.1)

which is called the quasi-reciprocal continued fraction of the Thiele type (TQCF). From (5.1), it
follows that the TQCF is a continued fraction of form (2.3) where b0 = 0, a1 = 1, bk = dk−1(z∗),
ak+1 = z − z∗, k ∈ N.

Denote as {k}f(z∗) the value of the reciprocal derivative of the 2nd type of the k-th order of the
function f at the point z∗ ∈ K [9].

Theorem 5.1. [9] If the function f is analytic in K ⊂ C and the Hankel determinants H
(1)
k+1(z∗),

H
(2)
k (z∗), H

(−1)
k+2 (z∗), H

(0)
k+1(z∗), k = 0, n, differ from zero at the point z∗ ∈ K, then the function f

has finite reciprocal derivatives of the 2-nd type to the 2n-th order inclusive at the point z∗, which are
determined either as the ratio between the Hankel determinants

{2k+1}f(z∗) =
H

(−1)
k+2 (z∗)

H
(1)
k+1(z∗)

, k = 0, n− 1, {2k}f(z∗) =
H

(2)
k (z∗)

H
(0)
k+1(z∗)

, k = 1, n,
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or using the recurrent formulas

{k}f(z∗) =
k(

{k−1}f(z∗)
)′ + {k−2}f(z∗), k = 2, 2n,

{0}f(z∗) =
1

f(z∗)
, {1}f(z∗) =

− f2(z∗)

f ′(z∗)
.

(5.2)

Theorem 5.2. [9] If the function f has reciprocal derivatives of the 2-nd type up to the n-th order
inclusive and C = const, then, for m = 0, [n2 ],

{2m}(Cf(z)) = 1
C · {2m}f(z), {2m−1}(Cf(z)) = C · {2m−1}f(z) . (5.3)

Theorem 5.3. Let the function w = f(u) have a reciprocal derivative of the 2-nd type at the point
u0 ∈ K, and the function u = g(z) a derivative at the point z0 ∈ C. Then the composite function
w = F (z) = f(g(z)) will have a reciprocal derivative of the 2-nd type at the point z0, which is
determined by the formula {1}F (z0) =

{1}f(g(z0))/g
′(z0).

Theorem 5.4. If the function f has a reciprocal derivatives of the 2-nd type up to the n-th order
inclusive and C = const, then for k = 0, [n/2],

{2k}f(Cz) = {2k}f(v)
∣∣
v=Cz

, {2k−1}f(Cz) = 1
C · {2k−1}f(v)

∣∣
v=Cz

. (5.4)

Proof. We shall prove the theorem by induction. According to Theorem 5.3, we have

{1}f(Cz) = 1
C
{1}f(v)

∣∣
v=Cz

.

Then
{2}f(Cz) =

2

({1}f(Cz))′
+ f(Cz) =

[
2

({1}f(v))′
+ f(v)

]
v=Cz

= {2}f(v)
∣∣
v=Cz

.

Let (5.4) be obeyed for k = m− 1. If k = m, from (5.2), we get

{2m}f(Cz) =
2m

({2m−1}f(Cz))′
+ {2m−2}f(Cz) =

=

[
2m

({2m−1}f(v))′
+ {2m−2}f(v)

]
v=Cz

= {2m}f(Cz)
∣∣
v=Cz

,

{2m+1}f(Cz) =
2m+ 1

({2m}f(Cz))′
+ {2m−1}f(Cz) =

=

[
2m+ 1

C({2m−1}f(v))′
+

1

C
· {2m−1}f(v)

]
v=Cz

= 1
C
{2m+1}f(v)

∣∣
v=Cz

.

Hence, (5.4) are obeyed for any k-value.

Suppose that there are reciprocal derivatives of the 2-nd type {n}f(z) in a certain vicinity of the
point z∗ ∈ K. Then the function f(z) can be expanded in TQCF (5.1) with the coefficients

d0(z∗) =
1

f(z∗)
, d1(z∗) =

{1}f(z∗),

dk(z∗) =
k(

{k−1}f(z∗)
)′ = {k}f(z∗)− {k−2}f(z∗), k ∈ N2.

(5.5)
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The function f can be expanded in the vicinity of the point z∗ ∈ K in a quasi-reciprocal continued
fraction of the C-fraction type (CQCF), which is equivalent to TQCF (5.1) and looks like

f =

(
e0(z∗) +

∞

k=1

ek(z∗)(z − z∗)

1

)−1

. (5.6)

The CQCF coefficients are determined via the reciprocal derivatives of the 2-nd type of the function
f at the point z∗ ∈ K according to the formulas

e0(z∗) =
1

f(z∗)
, e1(z∗) =

1
{1}f(z∗)

,

ek(z∗) =

({k−2}f(z∗)
)′ ({k−1}f(z∗)

)′
(n− 1)n

, k ∈ N2.

(5.7)

Theorem 5.5. [9] Let the elements of CQCF (5.6) be such that en ̸= 0, lim
n→∞

en = 0, n ∈ N0. Then

(A) CQCF (5.6) and equivalent to it TQCF (5.1) converge to a meromorphic function f ; (B) the
convergence of the continued fractions (5.1) and (5.6) is uniform on each compact set K ⊂ C that does
not contain poles of f ; and (C) the function f is holomorphic at the point z = z∗, and f(z∗) = 1/e0(z∗).

6. Expansion of the generating function of Bernoulli numbers in quasi-reciprocal
continued fractions

Let us expand the auxiliary function h defined in (4.1) in the TQCF and CQCF. It is easy to verify
that the reciprocal derivatives of the 2-nd type of the function h are determined by the formulas

{4k}h(z) =
1

ez − 1
, {4k+1}h(z) = −(2k + 1)e−z(e2z − 2(2k + 1)ez + 1),

{4k+2}h(z) =
−1

ez + 1
, {4k+3}h(z) = 2(k + 1)e−z(e2z + 4(k + 1)ez + 1), k ∈ N0.

Then, according to (5.5), the coefficients of the function h expansion in a TQCF in the vicinity of the
point z∗ acquire the values

d0(z∗) =
1

ez∗ − 1
, d4k−3(z∗) =

−(4k − 3)(ez∗−1)2

ez∗
, d4k−2(z∗) =

−2ez∗

e2z∗ − 1
,

d4k−1(z∗) = (4k − 1)e−z∗(ez∗ + 1)2, d4k(z∗) =
2ez∗

e2z∗ − 1
, k ∈ N.

Substituting them into TQCF (5.1), after equivalent transformations, we obtain the expansion of the
generating function b,

b(z) =
((e2z∗ − 1)/ez∗)z

(ez∗ + 1)/ez∗ +

z − z∗

− ez∗−1
ez∗+1

+

z − z∗
−2 +

z − z∗

3 ez∗+1
ez∗−1

+

z − z∗
2 +

+ · · ·+
z − z∗

(−1)k(2k − 1)
(
ez∗−1
ez∗+1

)(−1)k+1 +

z − z∗
(−1)k2 + · · ·

. (6.1)
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Using formulas (5.7), we find the coefficients of the function h expansion in CQCF (5.6) in the vicinity
of the point z∗ ∈ K,

e0(z∗) =
1

ez∗ − 1
, e1(z∗) =

−ez∗

(ez∗ − 1)2
, e2k−1(z∗) =

(
ez∗−1
ez∗+1

)(−1)k+1

2(2k − 1)
,

e2k(z∗) =
−
(
ez∗−1
ez∗+1

)(−1)k

2(2k − 1)
, k ∈ N.

As a result, we obtain

b(z) =
(ez∗ − 1)z

1 +

− ez∗ (z−z∗)
ez∗−1

1 +

(ez∗+1)(z−z∗)
2(ez∗−1)

1 +

− (ez∗−1)(z−z∗)
6(ez∗+1)

1 +

(ez∗−1)(z−z∗)
6(ez∗+1)

1 +

+ · · ·+

− z−z∗
2(2k−1)

(
ez∗−1
ez∗+1

)(−1)k+1

1 +

z−z∗
2(2k−1)

(
ez∗−1
ez∗+1

)(−1)k

1 + · · ·
. (6.2)

Since lim
k→∞

e2k−1(z∗) = lim
k→∞

e2k(z∗) = 0, then, by Theorem 5.5, the continued fractions (6.1) and (6.2)

converge to the function b, with the convergence being uniform on an arbitrary compact set K ⊂ G.

7. Representation of the generating function of Bernoulli polynomials by the
Thiele continued fraction and the regular C-fraction

Let us fix some point z0 in the set G and consider the auxiliary function

B(x) = B(z0, x) = b(z0)e
z0x. (7.1)

Let us find the reciprocal Thiele derivatives of the function B. It is known [13] that the reciprocal
Thiele derivatives of the function et, t ∈ R, are determined by the formulas

(2k)et = (−1)ket, (2k+1)et =
(−1)k(k + 1)

et
, k ∈ N0.

According to (3.2), we have

(2k)
(
ez0x

)
= (−1)kez0x, (2k+1)

(
ez0x

)
=

(−1)k(k + 1)

z0 ez0x
, k ∈ N0.

Taking the last equality in (3.1) into account, we obtain that the reciprocal Thiele derivatives of the
function B are

(2k)
(
B(x)

)
= (−1)k · b(z0)ez0x = (−1)k ·B(x),

(2k+1)
(
B(x)

)
=

1

b(z0)
· (−1)k · (k + 1)

z0 · ez0x
=

(−1)k · (k + 1)

z0 ·B(x)
, k ∈ N0.

According to (3.4), the expansion coefficients of the function B in the TCF in the vicinity of the point
x∗ equal

b0(x∗) = b∗, b2k−1(x∗) =
(−1)k · (2k − 1)

z0 · b∗
,

b2k(x∗) = (−1)k · 2 · b∗, b∗ = B(x∗), k ∈ N.
(7.2)
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Substituting coefficients (7.2) into TCF (3.3), after equivalent transformations, we obtain the following
expansion of the function B:

B(x) = b∗

(
1 +

x− x∗

1/z0 +

x− x∗

−2 +

x− x∗

−3/z0+ +

x− x∗

2 +

x− x∗

5/z0 +

+ · · ·+
x− x∗

(−1)k−1(2k − 1)/z0+

x− x∗

(−1)k2+ · · ·

)
.

Since z0 is an arbitrary point of the set G, we obtain from (7.1) that

B(z, x) = b(z)ex∗z
(
1 +

x− x∗

1/z +

x− x∗

−2 +

x− x∗

−3/z +

x− x∗

2 +

x− x∗

5/z +

+ · · ·+
x− x∗

(−1)k−1(2k − 1)/z+

x− x∗

(−1)k2+ · · ·

)
. (7.3)

Repeating the arguments similar to the above, it is easy to demonstrate that the function ex∗z,
where x∗ is fixed, has the following expansion in the TCF in the vicinity of the point z∗:

ex∗z = ex∗z∗
(
1 +

z − z∗

1/x∗ +

z − z∗

−2 +

z − z∗

−3/x∗+

z − z∗

2 +

z − z∗

5/x∗ +

+ · · ·+
z − z∗

(−1)k2+

z − z∗

(−1)k(2k + 1)/x∗+ · · ·

)
. (7.4)

Substituting expansions (4.4) and (7.4) into (7.3), we obtain the representation of the generating
function of the Bernoulli polynomials B in the form of the product of three continued fractions,
namely,

B(z, x) = ex∗z∗
( z

ez∗ − 1 +

ez∗(z − z∗)

1 +

z − z∗
−2 +

z − z∗
−3 + · · ·+

+

z − z∗
(−1)k−1(2k − 1) +

z − z∗
(−1)k2 + · · ·

)
·
(
1 +

x− x∗

1/z +

x− x∗

−2 +

x− x∗

−3/z +

+ · · ·+
x− x∗

(−1)k−1(2k − 1)/z+

x− x∗

(−1)k2+ · · ·

)
·
(
1 +

z − z∗

1/x∗ +

z − z∗

−2 +

+

z − z∗

−3/x∗+ · · ·+
z − z∗

(−1)k−1(2k − 1)/x∗+

z − z∗

(−1)k2+ · · ·

)
. (7.5)

Now changing each continued fraction in product (7.5) into an equivalent regular C-fraction, we obtain

B(z, x) = ex∗z∗
( z

ez∗ − 1 +

ez∗(z − z∗)

1 +

−1
2 (z − z∗)

1 +

1
6(z − z∗)

1 +

+ · · ·+

−1
2(2k−1)(z − z∗)

1 +

1
2(2k+1)(z − z∗)

1 + · · ·

)
·
(
1 +

z(x− x∗)

1 +

+

−1
2 z(x− x∗)

1 +

1
6z(x− x∗)

1 + · · ·+

−1
2(2k−1)z(x− x∗)

1 +

+

1
2(2k+1)z(x− x∗)

1 + · · ·

)
·
(
1 +

x∗(z − z∗)

1 +

−x∗
2 (z − z∗)

1 +
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+

x∗
6 (z − z∗)

1 + · · ·+

−x∗
2(2k−1)(z − z∗)

1 +

x∗
2(2k+1)(z − z∗)

1 + · · ·

)
. (7.6)

Since, for fixed x∗ and z,

lim
k→∞

−1

2(2k − 1)
= lim

k→∞

1

2(2k + 1)
= lim

k→∞

−x∗
2(2k − 1)

= 0,

lim
k→∞

x∗
2(2k + 1)

= lim
k→∞

−z

2(2k − 1)
= lim

k→∞

z

2(2k + 1)
= 0,

then, according to Theorem 3.3, the products of continued fractions (7.5) and (7.6) converge to the
generating function of Bernoulli polynomials B(z, x) on the set G free of the poles of the examined
function. Products (7.5) and (7.6) converge uniformly on an arbitrary compact set K ⊂ G.

8. Representations of the generating function of Bernoulli polynomials via
quasi-reciprocal continued fractions

Let z0 ∈ G be a certain fixed point. Let us determine the reciprocal derivatives of the 2-nd type
of the auxiliary function B defined in (7.1). In [9] , it was proved that the reciprocal derivatives of the
2-nd type of the function et, t ∈ R, are defined as follows:

{2k−1}et = (−1)k · k · et, {2k}et =
(−1)k

et
, k ∈ N.

Whence and from Theorem 5.4, we have

{2k−1}ez0x =
(−1)k

z0
· k · ez0x, {2k}ez0x =

(−1)k

ez0x
, k ∈ N.

Taking property (5.3) of the reciprocal derivatives of the 2nd type into account, we obtain

{2k−1}B(x) =
(−1)kk

z0
b(z0)e

z0x =
(−1)kk

z0
B(x),

{2k}B(x) =
(−1)k

b(z0) · ez0x
=

(−1)k

B(x)
, k ∈ N.

According to (5.5), the expansion coefficients of the function B in TQCF (5.1) in the vicinity of the
point x = x∗ are

d0(x∗) =
1

b∗
, d2k−1(x∗) =

(−1)k(2k − 1)

z∗
b∗,

d2k(x∗) =
(−1)k · 2

b∗
, b∗ = B(x∗), k ∈ N.

Substituting them into (5.1), after equivalent transformations, we obtain

B(x) = b∗

(
1 +

x− x∗

−1/z0+

x− x∗

−2 +

x− x∗

3/z0 +

x− x∗

2 +

x− x∗

−5/z0 +

+

x− x∗

−2 + · · ·+
x− x∗

(−1)k(2k − 1)/z0+

x− x∗

(−1)k2+ · · ·

)−1
.
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The point z0 is an arbitrary point of the set G. Then

B(z, x) = b(z) · ex∗z
(
1 +

x− x∗

−1/z +

x− x∗

−2 +

x− x∗

3/z +

x− x∗

2 +

x− x∗

−5/z +

+

x− x∗

−2 + · · ·+
x− x∗

(−1)k(2k − 1)/z+

x− x∗

(−1)k2+ · · ·

)−1
. (8.1)

Repeating the arguments similar to the above, we obtain that the expansion of the function ex∗z with
a fixed x∗ value in the TQCF the vicinity of the point z = z∗, after equivalent transformations, has
the form

ex∗z = ex∗z∗
(
1 +

z − z∗

−1/x∗+

z − z∗

−2 +

x− x∗

3/x∗ +

x− x∗

2 +

+ · · ·+
z − z∗

(−1)k(2k − 1)/x∗+

z − z∗

(−1)k2+ · · ·

)−1
. (8.2)

Substituting expansion (8.2) and representation (6.1) of the generating function of Bernoulli numbers
into (8.1), we obtain the representation of the generating function of Bernoulli polynomials B in the
form of the product of three quasi-reciprocal Thiele continued fractions,

B(z, x) = ex∗z∗
[((e2z∗ − 1)/ez∗)z

(ez∗ + 1)/ez∗ +

z − z∗

− ez∗−1
ez∗+1

+

z − z∗
−2 +

z − z∗

3 ez∗+1
ez∗−1

+

+

z − z∗
2 + · · ·+

z − z∗

(−1)k(2k − 1)
(
ez∗−1
ez∗+1

)(−1)k+1 +

z − z∗
(−1)k2 + · · ·

]
×

×
[
1 +

z − z∗

−1/x∗+

z − z∗

−2 +

z − z∗

−3/x∗+

z − z∗

2 +

z − z∗

5/x∗ + · · ·+

+

z − z∗

(−1)k(2k − 1)/x∗+

z − z∗

(−1)k2+ · · ·

]−1
×
[
1 +

x− x∗

−1/z +

x− x∗

−2 +

+ · · ·+
x− x∗

(−1)k(2k − 1)/z+

x− x∗

(−1)k2+ · · ·

]−1
. (8.3)

Each of the quasi-reciprocal continued fractions can be written via equivalent continued fractions
with partial denominators equal to unity, i.e.,

B(z, x) = ex∗z∗
((ez∗ − 1)z

1 +

− ez∗
ez∗−1(z − z∗)

1 +

ez∗+1
2(ez∗−1)(z − z∗)

1 +

+

− ez∗−1
6(ez∗+1)(z − z∗)

1 +

ez∗−1
6(ez∗+1)(z − z∗)

1 + · · ·+

+

−1
2(2k−1)

(
ez∗−1
ez∗+1

)(−1)k+1

(z−z∗)

1 +

1
2(2k−1)

(
ez∗−1
ez∗+1

)(−1)k
(z−z∗)

1 + · · ·

)
×

×
(
1 +

−x∗(z − z∗)

1 +

x∗
2 (z − z∗)

1 +

−x∗
6 (z − z∗)

1 +

x∗
6 (z − z∗)

1 + · · ·+

+

−x∗
2(2k−1)(z − z∗)

1 +

x∗
2(2k−1)(z − z∗)

1 + · · ·

)
·
(
1 +

−z(x− x∗)

1 +
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+

z
2(x− x∗)

1 +

−z
6 (x− x∗)

1 +

z
6(x− x∗)

1 +

+ · · ·+

−z
2(2k−1)(x− x∗)

1 +

z
2(2k−1)(x− x∗)

1 + · · ·

)
. (8.4)

Since lim
k→∞

1
2(2k−1) = 0, then, by Theorem 5.5, the continued fractions from product (8.4) and their

equivalent continued fractions from product (8.3) converge, and this convergence is uniform on any
compact set K ⊂ G.

9. Final remarks

In this paper, expansions of the generating function of Bernoulli numbers in the vicinity of a certain
point z∗ ∈ G in the Thiele continued fraction and the regular C-fraction were obtained. The areas of
convergence and uniform convergence of expansions were determined.

An expansion of the generating function of Bernoulli numbers in quasi-reciprocal continued fractions
was also proposed. The convergence and uniform convergence of such expansions were proved.

A representation of the generating function of Bernoulli polynomials was obtained in the form of
the product of three continued fractions and the product of three quasi-reciprocal continued fractions.

The author is grateful to the Reviewer for valuable comments and advice.
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