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A CONTINUANT AND AN ESTIMATE OF THE REMAINDER OF THE
INTERPOLATING CONTINUED C-FRACTION

M. M. Pahirya. A continuant and an estimate of the remainder of the interpolating continued
C-fraction, Mat. Stud. 54 (2020), 32-45.

The problem of the interpolation of functions of a real variable by interpolating continued
C-fraction is investigated. The relationship between the continued fraction and the continuant
was used. The properties of the continuant are established. The formula for the remainder of
the interpolating continued C-fraction proved. The remainder expressed in terms of derivatives
of the functional continent. An estimate of the remainder was obtained. The main result of
this paper is contained in the following Theorem 5:

Let R C R be a compact, f € C™TD(R) and the interpolating continued C-fraction (C-
ICF) of the form

P, " — Tpe
D,(z) = 0 ((i)) zao—l—KM, ar €ER, k=0,n,
n k=1

be constructed by the values the function f at nodes X = {z; : x; € R,z; # x;,1 # j,1,j =
0,n}. If the partial numerators of C-ICF satisfy the condition of the Paydon—Wall type, that
is 0 < a* diamR < p, then

o IT | — o T n+1—2k
D, < k=0 ( . n+1\/ *\k ;
@) = Du@)l < ey (% +1<p>+kZl( i) Z iy (p)
= 11:
n+3—3k n—3 n—1
X Y Kipea-1P) D Rinacine1(0) D K -1(p) /‘fn—ik(p))v
i2=11+2 ig—1=tk—2+2 =tk —1+2

*

% (n+1—m) (1+\/1+4p)n7(17\/1+4p)n
where f* = max max|f (@)], kn(p) = ,a* = max |a;,
0<m<r z€R 21 /1 +4p 2<i<n
p=t1—t), t€ (03], r=[3].

1. Introduction. The need to interpolate a function of the one real variable arises, as
an auxiliary task, in solving many problems of mathematics, applied mathematics, physics,
mechanics, engineering, economics, etc. The problem of interpolation has independent im-
portance too. The functions can be interpolated by the polynomials (|1, 2, 3]), splines ([4]),
rational functions ([2]), Padé approximants ([5]), etc.

In addition to these methods, the function f defined on the compact R C R can be
interpolated by different types of continued fractions (|6]). An estimate of the remainder of
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the interpolating continued C-fraction was obtained in [7]. The current article is devoted to
obtaining new properties of the continuant and to prove on their basis an estimate of the
remainder of the interpolating continued C-fraction.

2. interpolating continued C-fraction. Here are necessary definitions, formulas, state-
ments in the theory of fractions ([8]). Let by, ar # 0,br,k € N, be numbers, functions,
functionals, matrices, operators, and so on. Infinite continued fraction of the form

a
D = by + - (1)
by + o
b+
: . a,
bn + .
will be briefly written as follows
ap a2 Qg

D:b0+K%:b0+ = by + K(ax/by).
k
k=1

bt byt - bt -
Similarly, nth approximation of the infinite continued fraction (1) is briefly written as

a a2 Gp,
bi+ bo+ -+ b,

b,

D, = - =
@n

" a
b0+Kb—::b0+ :bo—i-KZ:l(CLk/bk). (2)
k=1

The quantities P,, Q,,n € Ng = NU{0}, are called the canonical numerator and denomina-
tor, and by, ag, b, k € N, are called elements of the continued fraction. The values of P, and
(), can be determined by the elements of the continued fraction using Wallis formulas

Pn:bnpnfl—i_anpnf% Pflzla Py = bo.
Qn = ann—l + anQn—Qa Q—l =0, QO =1, nel
Definition 1. Two continued fractions by + K(ax/bx) and dy + K(ci/dy) are said to be

equivalent if and only if they have the same sequence of approximants, by + K}_, (ax/bx)
= do + ngl (Ck/dk)

Theorem 1 ([8]). Continued fractions by + K(a/byx) and dy + K(cr/dy) are equivalent if
and only if there exists a sequence of non-zero constants {ry : ro = 1,1, # 0,k € N} such as

(3)

do = bo, Cr, = Tk—1TkAafL, dk = T’kbk, k € N. (4)

Consider the problem of interpolation of the functions by a continued fraction. Let the
set of interpolation nodes be selected on the compact R C R

X:{ZEZ'ZZEZ'GR,IEi%l'j,i%j,i,j:O,n}- (5>
The function f will be interpolated by the continued fraction of the form

P, 5 — T —
D )
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A continued fraction (6) is called an interpolating continued C-fraction (C-ICF) (|6]).

The C-ICF satisfies the interpolation conditions D, (zx) = vk, =1 € X, yr = f(xp),
k = 0,n. Its coefficients ay, k € Ny, are determined by the following recurrence relation in
the form of a continued fraction

Y1 — Yo ak—l(l"k - xk—2) ak—Q(fEkz - xk—:a)
ap = Yo, 41 = ,ap = ———| —1
T — Xo T — Th_1 -1 + -1 +
Qp_3(Tp — Tp_ (T — ai(xp — x _
k—3(Tp — Th—a) oz — 1) (g o)) e 7)
+ -1 + -t -1 + Yk — Y

It is easy to see, that C-ICF (6) is a rational function. The degree of the polynomials of
numerator and denominator satisfy the inequalities deg P, (z) < [2E], deg Q. (z) < [2]. It
is well known that C-ICF is equivalent to the Thiele interpolating continued fraction (]9]).

Theorem 2 ([7]). Suppose the function f € C"*+*V(R). Let C-ICF (6) be constructed by
the values of the function f at nodes (5). Then the remainder of the C-ICF satisfies the
inequality

(T) [ 1T _o |7 — i n+1 mr_m o st N
'f(x)—Qn(x) < 0.0 ( i1 (p +Z gﬁg(n—2(m+z)+])>a
where

(n+1—i) _(1+\/1+4p)”—(1—\/1+4p)"
r=[n/2], f* = maxmax |f" ()|, ka(p) = :
0<i<r z€R 2n /1 +4p
a* = max |a;|, p=a"diam R,
2<i<n

Theorem 3. If partial numerators a;(x),i = 2, n, of the finite functional continued fraction
(FCF) of the form

D,(x) = CJ;:((?) = ag(z) + K ai(lx) (8)

=1

for arbitrary x € R satisfy the condition of the Paydon—Wall type |a;(x)| < t(1 —t), where
0 <t <1, then the canonical denominator Q,(z) of the FCF (8) satisfies the inequality

1— (4(1 =)™

, if 0<t<i,
1Qn()] > (1) = { 2'(1—4(1 = 1)) ’ 9)
n—+1 ] 1
y If t = 5
2n

Proof. We rewrite the FCF (8) in the form of an equivalent continued fraction. In the
formulas (4) we choose r; = 2,7 = 1,n. We get that

Py(z)  Pu(z)  ao(z) 42;8) das(x) da,(x)
Qu(z)  Qu(z) 2 (2+ 2 + 2 4+ -4 2 )

By the assumption of the theorem |a;(x)| < (1—1)t,i = 2,n, then |Q(x)| = 2 > 4(1—t)t+1.
We use the Wallis formulas (3). We have

|Qa(2)] = 12Q1(2) + 4a2(2)Qo2)| = [2Q1(2)] — 4az(x)| 2 [Qu(x)|[(4(1 — 1)t + 1) — 4(1 — )t =

—

Dn(z) =
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= [Qu(@)] + 4(1 — )t(|Qu(x)] — 1) > |Qu(e)]| + (4(1 - t)t)°.

From this it follows that [Qa(z)| — |Q1(x)| > (4(1 — t)t) . Next,
|Qs(2)| = [2Q2(2) + 4a3(2)Q1(2)] > 2|Q2(2)] — 4laz(2)||Q1(2)] > [Qa(2) (41 — )t +1)—
—4(1 = 1)t|Q1(2)] = [Qa2(2)] + 4(L — 1)t(|Q2(2)] — Q1 (2)])-

Then |Qs(z)| — |Q2(z)] > (4(1 — t)t) . In the general case, for arbitrary s = 2,n from the
Wallis formulas, it follows
|Qs(2)] = [2Qs—1(2) + 4ay(2)Qu—2()| = 2|Qu—1(2)| — 4as(2)[|Qs—2(x)] =
> |Qs1 ()| (41 = )t + 1) — 4(1 = 1)t Qs—2(2)| >
> |Qs-1(2)| +4(1 = )t(|Qs-1(2)] — |Qs2(2)]).
Using induction we get that |Qs_1(z)| — [Qs—2(z)| > (4(1 — ¢)t)". Then

n n (1= @a-nn)"! oo
|Qn ()] :Z(|Qz| - |Qz—1|) + Q1] 22(4(1—15)75)2 = 1—4(1 -0t <t <3,

=2 =1 n+1, t=1.
Since Q,(r) = 2"Q,(z) we get the estimate (9). 0

The next statement follows from Theorems 2 and 3.

Theorem 4. Let f € C"*Y(R). Let C-ICF (6) be constructed by the values of the function
f at nodes (5) and let the partial numerators of C-ICF satisfy the condition of the Paydon—
Wall type, that is 0 < a* diam 'R < p. Then

f ﬁ |x_$k| - +1 «— +k -m—k\ k
) = Du@)l < g (o) + 32 G @) m 32 () ().
where

1+v1+4p)"—(1—+/1 4+ 4p)"
f* = max max|f n+1—m)(x)” Fon (D) :( +v/1+4p)"—( + 4p)

0<m<r zeR 2n 1+
a* = max |a;|, p=t(1—1t), t € (0;3], r=1[2].

2<i<n
The main result of this paper is contained in the following theorem.

Theorem 5. Let f € C"*V(R). Let C-ICF (6) be constructed by the values the function f
at nodes (5) and let the partial numerators of C-ICF satisfy the condition of the Paydon—Wall
type, that is 0 < a* diam R < p. Then

f* H |I - xk| r n+1-2k
— D, (2)] < L( . L - (p)x
n+3—3k n—3 n—1
X > k@) Y Fanaa®) D R 1(D) By, (p)>> (10)
t9=11+2 1=k _2+2 =1k _1+2

where the quantities r, p,a*, f*, k,(p) are defined in theorem 4.
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3. Some properties of the continuant. Let by, a;,b;,7 € N, be real numbers or functions.
The determinant of the form

bi a1 0 0 0 0
=1 biy1 a2 O 0 0
0 =1 by aiys 0 0
HO =10 0 -1 byz ... 0 0| 4=0n neN,
O 0 O 0 e bn—l anp,
0 0 0 o ... =1 b,

is called a continuant ([10]). A continuant will be shortly written as

H(i) :/C< ai+17ai+27--~7anflaan>
N .
bi7 bi+17 bi+27 ) bnfla bn

Since continuant is a partial case of the Hessenberg determinant, it satisfies the three-term
recurrence relation ([11])

m=i+1,n, H”=b, H” =1. (11)

3 3

HE = b MG+ an M)

m—2>

Theorem 6. If the element a; of a continuant is equal to zero, where i < k < n, and all
other elements are non-zero then

HO =H® .y (12)
Proof. We have a;, = 0. From the recurrence relation (11) follows
H/(f) = bk”r"[;(le = H;(gk)H;(Ql, 7'[1(;11 = bk+1H](<;i)+ak+1H1(421 = (bk‘bk‘-l—l—f—ak-f—l)Hl(jzl = Hl(cl?lﬂl(czll

Therefore, for n = k and n = k + 1 the formula (12) holds. Let us assume that (12) holds
for n = m. Then from (11) we get

7—[7(7?+1 = bm+17'l£r? + am+17{§;i)71 = bm+1H7(7]"f)Hl(jll + am+17'[£f)71%1(21 - HE:LHI(:L
Thus, the formula (12) holds for arbitrary n. O

Theorem 7. If by,; =0, by # 0, when s # k + 1, as # 0,s = i,n,i7 < n, then the following
equality holds

-1 bi+1 a;12 0 0 0 0 e 0 0

0 -1 b ... 0 0 0 0 ce 0 0

‘ 0 0 0 bk+if2 A1 0 0 0 0

ABK =10 0 0 0 0  apy O 0 0=

0 0 0 0 —1 bk+i Afti+1 0 0

0 0 0 0 0 -1 brii 0 0

0 0o ... 0 0 0 0 coe by oap

0 0o ... 0 0 0 0 . =1 by

= akHIC,(jJ)ri_Qngk”“), where KUHD =W =1, k=T, n—1. (13)
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Proof. Let k = 1. Then

0 a1 0 Ce 0 0
—1 bi+1 (7T, 0 0
g |0 T e 000
0 0 0 ... by ay
0 0 0o ... =1 b,

We get AGY = @it1 ICZ(i 1IC (+2) , if we decompose the determinant consecutively by the 1st
row and the 1st column. Let k: = 2. We decomg)ose the determinant by the 2nd row and
the 2nd column. We have A = iy D)t In the general case, for £ = m we will
decompose the determinant consecutlvely by mth row and mth column, then

-1 bi+1 i1 ... 0 0 0 0 ce 0 0
0 =1 b ... 0 0 0 0 .. 0 0
A 0 0 0 bm+i72 A 4i—1 0 0 0 0
ABm —10 0 0 0 0  amy O 0 0=
0 0 0 0 —1 bm+i Am+i+1 0 0
0O 0 0 0 0 1 bpei 0 0
0 0 0 0 0 0 bp—1 an
0 0o ... 0 0 0 0 -1 b,
—1 bi+1 a;12 0 0 0 Ce 0 0
0 —1 bys ... 0O 0 0O ... 0 0
_a 4 0 0 0 N bm+i_2 Am+i—1 0 N 0 0 _
o0 0 L. 0 ~1  @myiy1 ... 0 0
O 0 0 ... 0 0 bpriss ... 0 0
0 0 0 0 0 0 coe bp1 an
0 0 0o ... 0 0 0 .. —1 b,
b @iy ... 0 0 0 0 0
—1 b 0 0 0 0 0
0 0 .o bm+2‘_3 Ap+i—2 0 .o 0 0
= —Am+iQmti—1 0 0 e 0 0 Am+i+1 - - - 0 0|+
0O 0 ... 0 0 bmsisi ... 0 0
0 0 0 0 0 bn—1 an
0 0 0 0 0 -1 b,
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1 br ... O 0 0 0 0 0

0 0 brti-3 Qmyi—2 0 0 0 0

s 0 0 —1 bmtri—o 0 0 0 0
"o 0 0 0 bivivt  Omyito 0 0

0 0 0 0 -1 btitao 0 0

0 0o ... 0 0 0 0 v by ay

0 0o ... 0 0 0 0 ... =1 b,

We take the first (m — 2) columns in the determinants and use the Laplace theorem ([12]).
We obtain AS™ = am+ilC£,fb)+i721C7(lm+z+l). The formula (13) is proved. O

It is known ([10]) that a continuant has the property of invariance with respect to the
inverse order of its elements, i.e.

Ai+1y Qit2; - - -5 An—1; Gn An; An—1; -5 Ai43, Qi42; Ait1

e, o ) =x( ). 14
bi7 bi+17 bi+27 SRR bn—17 bn b’ru bn—17 bn—27 SRR bi+27 bi-i-la bz ( )

4. The representation C-ICF in the form of the ratio of the continuants. We use

the fact that nth approximation (2) of a continued fraction (1) can be represented as a ratio

of the continuants ([11]), i.e.

P, _
We introduce continuants of the form
i Qi1 (T — T3), Qipa(T — Tig1), -+ oy (T — Tpy1)
S 1 N R

where i = 0,1, ¢cg = ag, c1 = 1, m = 1,n.

In accordance with (15) we have that C-ICF can be represented as the ratio of two
continuants of the form (16), i.e. Dy(z) = CV(2)/C"(z). Let us show that D, (z}) =
- C%O)(xk)/cg)(xk) = C,go)(xk)/C,(gl)(xk), k = 0,n. It is easy to see that the element
Apriv1(T — Tpys), k = 0,n, of the continuants cl? (x),i = 0,1, is equal to zero for x = xg;.
By Theorem 6 we have

CP(xr)  CO(an)CY V() CP(xy)

CH(xy)  CP(a)CF V() CM(a)

We obtain another formula for determining the coefficients ay, k = 0, n, of the C-ICF (6).
The C-ICF satisfies the interpolation condition

K ar(zy — o), az(Tr — 1), - -+, ag(Th — Tp1)
—D(:c)— agp, 1, 1, e 1
Y Ak K az(xk - x1), a3(5€k - 562), ) ak(xk - qu) ’
1, 1, 1, cee 1
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or

of (e =) as(zp = 22), o (o — 2pa)
U T | 1 1

_K ar(xr — x0), az(Tr — 1), . .., ap(Tk — Tp—1)
ao, 1 1 1 ’

5 5 ey

3 5 ey

When it is considered that continuant has the property of invariance (14), then we have

KC ak(xk - xk&); akq(ﬂik - Ik72)7 sy az(l‘k - 961) _
YRR\ 1, 1 1 1

—K ak(ﬂﬂk - l‘k—l), ak—1($k - xk—2), cey a2($k - Il), a1($k - l’o)
1, 1, 1, cee 1, ag )

We decompose both continuants by the 1st rows. Then get it

ap—1(Tp — Tp_2), Op—2(Tp — Tp_3), ..., Q2T — T
y;{/C(l k—1( kl k—2), Gp—2( kl k—3) o kl 1)>+

5 5 ey

(e — 251)K -2 (T = Th-3), Ah-3(Tk — Tp—a), . .-, @2(zp — 1) \ | _
1, 1, 1, 1
_K ar—1(Tr — Th—2), ap—2(Tp — Th—3), . . ., az(T) — 1), @1 (@ — 0)
= -
1, 1, 1, 1, ao
—i—ak(xk _ ka_l)lc<1 ak2($k1— 37k73), @k:’,(xkl— $k74), ce @2($k1— 1'1), Gl(l’l;— 1‘0)) ’
) 9 3 R ) 0
whence
ak—2($k - xk—?))a BRI a2($k - 901), a1($k: - xo)
_ e _
ax (= T 1)[ (1, 1, U a0
ak—2(a7k — xk—3)> cey az(l’k - $1), 0
's —
Yk (1, 1, U T |
_ W1 (Tk — Th-2), @h—2(Tk — Th—3), - . ., @2z, — x1), a1 (Tp — o) |
1, 1, 1, 1, ao
K akfl(xk - Skaz), Gk72($k - 371%3)7 ce Gz(ilfk - 371), 0
YR\ 1, 1, 1, 1, 1)
Finally
IC( ak—1($k - xk—2), cee a2($k - Il), G1($k - xo))
0 = — 1, 1, cee 1, Yk — Qg (17)
ap—2(Tr — Th-3), -, @z — 1), a1 (2 — 20)
(ZL’k —xk_l)lC
]-7 ]-7 R 1a Y — Qo

If we take the common multiplier (—1) out from odd rows and even columns of a continuants
of the numerator and the denominator (17) then we have

IC( ak1(:Ck—a;k2),...,a2(xk—xl),al(:vk—xo))
1,

_17 ) _17 Y — Qo
ap = — . (18)
(25 — 5-1) K ag—2(Tr — Tp—3), - - -, a2, — 1), a1 (Th, — T0)
g . _17 _]-7 SR _17 Y — Qo

The formula (18) is equivalent to the formula (7).
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5. Representation of remainder of C-ICF in the form of continuants. Let us ex-
press the remainder of C-ICF in terms of continuants. Consider the determinants [0511) (2)] Z(.l),

i = 1,n, that are formed from the continuant Cfll)(a:) by replacing the elements of the ith

rows by their derivatives. Obviously, the determinant [C;l)(x)}f_l) has only one non-zero

element a;,; in the ith row, i = 0,n — 1 and [ ( )]S) = 0 because the last row of the

determinant contains only zeros. Let [cn (x )]Ej), where i,7 = 1,n, determinants whose
elements of all rows, except the elements of ith and jth rows, equals the elements of the
continuant C%l)(x) and the elements of the ith and jth rows consist of the derivatives of
elements of the corresponding rows.

The following identities are valid

@ _ @ _ @ _n . T
[cnl)(x)]n, = [cnl)(x)} =0,i=1,n—2, [cnl)(m)]iﬁl =0,i=1,n—1. (19)
The first identity is obvious since the determinants contain a row with zero elements. The
second identity can be obtained by decomposition the determinants by the Laplace rule in
the sum of the products of the 2nd order minors on their cofactors contained in ith and
(i + 1)th rows.

Denote by [cnl (:c)]gf; ., determinants that are formed from the continuant 'V (z) by
replacing the elements of the rows 11,19, ...,1 by their derivatives.

Theorem 8. (A) The derivative of the kth order, k = 1, [n/2], of the continuant Cg)(:c) is

equal to
n+1 2k n+3—2k

(CP@)Y =k > 3 - Z D] (20)

11=1 i9=t1+2 =1k _1+2

(B) Ifk > [n/2], then (C,(ql)(x))(k) 0.

Proof. (A) We will prove the formula (20) by induction. By the rule of differentiation of
the determinant [13] we have that (Cg)(:c))(l) =yt [cg)(x)] o [cg)(x)]s) = (. The 2nd

=1 7 ?

derivative of the continuant CS)(I) will be equal to

() =3 T e

Based on the formula (19) and the symmetry [cg) (I)]S) = [c (1)( )];z) we have

1) (1 (2)
<C =2 Z Z C” Zliz'
i1=110=01+2
Suppose that the formula (20) holds for £ = m — 1, where m — 1 < [n/2], i.e

n+3—2m n+5—2m n—1

@)™ =m-nt Y Y e Y @I

i1=1 ia=i1+2 im—1=%m—2+2
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We find the derivative of the mth order of the continuant Cg)(x). Then we have

(m—1) , n  n+3—2mn+5-2m n—1 (m)
(@)™ ) =tm-1130 3 3 o 3 [@I L,
im=1 i1=1 i9=11+2 Im—1=%m—2+2
From (19) and the property [cg)(x)}fzzzm = [c,(f)(x)}f:;l)zm = ... = [cg)(x)}g::;mil 0
follows
n+1 2m n+3—2m n—1 (m)
(CP@) ™ =ml > > Yy [ @]
i1=1 i9=11+2 Im=tm—1+2

Therefore, the formula (20) is satisfied for an arbitrary 1 < m < [n/2].

(B) In accordance with (A), the derivative of the [ = [n/2] order of the continuant Cg)(x)
is determined by the formula (20). Find the derivative of the (I + 1)th order. We have

n n+1-2l n+3-2I

() =Y T T ),

k=1 i41=1 i9=i1+2 =i _1+2
All the determinants on the right will be zero by to the formula (19). O]

Theorem 9. Let function f € C"*V(R) be interpolated on the set (5) by the C-ICF (6).
Then there exists a point 1 € Int ‘R such that

n

l;%(x—xi) +1 (1 +1 (n+1-Fk)
@) = Dafa) = 3 ),Cm(x) (f el Z ) FHR (@) x

n+1—-2k n+3—2k .
SIS [cﬁwn;;..ik)

i1=1 do=11+2 =tk —1+2

, r=[n/2]. (21)
o=y

Proof. We have f(z) — D, (z) = f(x) — cl (m)/Cg)(a:) Consider an auxiliary function
F(z) = f(z) - CP(z) = COz) = XNz — 20)(z — 21) ... (x — ). (22)
The function F is zero in (n + 1) the interpolation nodes x; € R, i = 0,n. If X is taken as
follows
v @) G () — C ()

C(we— o) (e — 1) (1 — 1)

then the function F will be zero at (n 4 2) points of the set X = X U {z,} ¢ R. In
accordance with the generalized Rolley theorem [14] there exist a point £ € Int R such that
FOHI(E) =0, or

where 1z, € R\ X,

dn+1

— (f@CP@)

dn+1 ©)
z=£ B dxntl <Cn (I))

It follows from Theorem 8 that (Cg)(x))(%l) = 0. By the formula of the derivative of the
(n 4 1)th order of the product of two functions, we have

5—(n—|—1)!)\:0.

dn+1 r

= (f@-CP@) =3 () P @) (D).

k=0
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From this it follows

1 n+1 2k n+3—2k n—1

ey )l 4 ( FOEA R DD DRSS [Cnl)(xﬂgf;---ig

i1=1 d9=11+2 1=tk _1+2

33:5.
Since x, is an arbitrary point of the compact R, dividing (22) by Cg)(x) will have (21). O

6. Proof of Theorem 5. The main result of the article is proved in this paragraph.

Proof. The determinants [c%l)(x)]gﬁ)g 4, from the formula (21) will be given through the
continuants C(z). The ith row of the determinant [c{! )(x)]l( ) i =T,n —1, contains a single
non-zero element a; 1. Similarly, we get [c,(l)( )](2) —a,1+1a12+1C11 Wz )Cgff (x )C%Z2+2 (x).

1119
By the induction can be shown formula

[Cgll 1112 s H alkJrl Cgl) 1 ' Zs+2 H szk 11Jr2 § = 7 (23)

After substituting (23) in (21), we obtain

<

f{)(x ) (n+1) (1) +1\ £(n+1—Fk)
@) = Dule) = e (/@) @) + > ()

n+1—2k n+3 2k n—3

(1) 21+2 (ik—2+2)
X E ai1+1cz‘1 1 ( E a%zHCw () - E a’ik—lJFlCik,l—l (z)x

i1=1 i9=11+2 1=l _2+2

n—1

<D anCY @0 @)

1p=lg—112

o’ r=[n/2]. (24)

In [6] the inequality |C,Es)(a:)| < Kt_s12(p) was proved. Since |a;| < a*,i = 2,n, from (24) we
get

f* H |SL’ - xk| r n+1—2k
|f(x) = Dy(z)] < —=° na(p) + ) (") (@)" Kiy (P) X
(n+ 1) CP @) Z( 2 Z 1
n+3—3k n—3 n—1
X Z '%iz—zi—l(p) e Z ’L{’ik—l_ik—Q_l(p) Z K“ik—ik—l—l(p) Ron—iy, (p)> : (25)
12=11+2 lg—1=Tk—2+2 U=l —1+2

Coefficients of the C-ICF satisfy the conditions of the Paydon-Wall type. From (25) and
Theorem 2 we obtain (10). O

The proven estimate of the remainder of the C-ICF has a complex form. We get an
estimate of the remainder, which will be less accurate but more convenient.
From the definition of the r4(p), it follows

(1+vI+4p)—(1 \/1+4)<( \/1+ )
251 +4p - 2571 /1

K’S(p) -

s=1,n—-1
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Then )
> k@) ) < () ST
i=s+2 (VI+4p)
In the particular case for s = —1 we have

S < ORI,

Similarly, we obtain

n=3 n-1 nosgy (14 VT Fap)n—2
> Fims1(D) Y Kiaminoa(p) Famin () < (77 )(zn—s—f’(\/%)élp)?’ '

i1=8+2 i9=11+2

If s = —1 then

ne3 n—1 2 (1 + myﬁl
Zml(l?) mzzl.ﬂ Kiz—i1—1(P) Kn—iy (P) < ( 2 ) 2n4 (T +4p)? -

i1=1

By induction, we prove that inequality holds for m = 1,r

n+1—2m n+3—2m n—3
DR (%) B N RN () EEREN Kip 1—im_2—1(P) X
11=5+2 io=11+42 Im—1=%m—2+2

n—1 f———
X Z I{Zm_mel_l(p) K/n—im (p) S ( m 1) —5—2m—1 +1 .
i D In—s—2m ( /1 + 4p>m
If m = 1,2, then the inequality holds. Suppose that it is true for m = t. Then for m =t +1
we have

n—1-2t n—3 n—1
D 1@ Y P Y Riaie1 (D) i (p) <
11=5+2 Tt =1t—1+2 Tep1=1t+2

n—1-2t n—ip— i1—s—
Z (n—i1—t—1) (1+V1+4p) ! (1+v1+4p) ! _
t

. “, 2n—i1—2t—1( 1+4p)t+1 Qi1 —s—2 1+4p
11=S8

_ n—s—t_Q) (1 -+ M)n—s—t—l
_( thl ) gn—s=20-3(\ /T + dp)i+2’

<

The inequality holds for m =t + 1. In the particular case, for s = —1 we have
n+1-2m n+3—2m n—3
ki) Y Kimaaa®) D Ki—in a1 (p) X
i1=1 io=11+2 tm—1=tm—2+2

n—1
n—m (1 + V 1 + 4p)n+1—m ET
X Z Fim—im1-1(D) En—in,(p) < (") o am T dp)i m=1,r. (26)

im:im—1+2
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If we take into account the (26) inequality, then (10) can be written

AL e =l . o
f(2) = Dal)] € 20 S () (L) (a*)™(1 + /1 + 4p) |

(n+ D)1 Q(0) m )\ m

n—2m m+1
= on=2m (/T + dp)m+

Let the value n be fixed. The sequence of binomial coefficients is unimodal, that is

max (n—i-l) — (n—l—l)‘

o<m<r » ™ r
We then find the value of m, where 0 < m < [3], for which the relations (”;m) > (";ﬁf),
("M > (n;ﬁf) are valid. The first inequality holds when (n — 2m + 2)(n — 2m + 1) >

> m(n—m+1). Square trinomial 5m?* — (5n + 7)m + n* 4+ 3n + 2 takes non-negative values
when m € (0, (bn + 7 — v/5n? 4+ 10n + 9)/10) since (bn + 7 + v/5n? + 10n + 9)/10 > [n/2].
Similarly, the second inequality holds if m € ((5n — 3 — v/5n? 4 10n +9)/10), [5]). Hence
5n—3—\/51782+10n+9 <m < 5n+10—\/15(7)12+10n+9' It follows

max (") = ("), 1 =[(5n+ 7 — v5n% + 10n + 9)/10].

0<m<r ™

Next we have

i (@)™ (1 +v/TH+ap)"™ (14 VT+4p)" 7 (VI+dp(l + VT +4p))” — (4a”)

on=2m (/T4 4pym+tl  —  2n(\/T +4p)r T+4p(1 ++/1+4p) — 4a*

as the sum of the geometric progression with the first term (1 + /1 + 4p)"*™!/(2"/1 + 4p)
and the denominator ¢ = (4a*)/((1 + /1 + 4p)y/1 + 4p).
Finally we have an estimate of the remainder of the C-ICF

m=0

P o oy L T

|f(x) = Dy()] < (n+ 0] " 2n(m)r
(TFIL+ TFR) - ()
VI+4p(1+ 1 +4p) —da*

The obtained estimate of the remainder is simpler than the estimate of (10) but it is less
accurate.
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