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Application of a continuant to the estimation of a remainder term
of Thiele’s interpolation continued fraction

Mykhaylo M. Pahirya

(Presented by O. A. Dovgoshey)

Abstract. New properties of a continuant has been proved. Using the relationship between the continuant
and the continued fraction, an estimate of the remainder term of Thiele’s interpolation continued fraction
is obtained.
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1. Introduction

The function defined on a compact set R ⊂ R and set by values at points of the set X ⊂ R can be
approximated by an interpolation polynomial [1,2], spline [3], Padé approximant [4], and interpolation
continued fraction [5–8].

In work [9], the formula for the remainder term of Thiele’s interpolation continued fraction [10]
was generalized to continued fractions whose elements are polynomials. Work [11] gave the estimate
of the remainder term of Thiele’s interpolation continued fraction in the case where the function
f ∈ C(n+1)(R).

In the present work, while studying the problem of interpolation of functions of a real variable by
of Thiele’s interpolation continued fraction, we will use a continuant and prove its properties. We will
get the formula for the remainder term of Thiele’s interpolation continued fraction and substantiate
its estimate. By numerical examples, we will illustrate advantages of the new estimate of a remainder
term over that in work [11].

2. Interpolation of functions by continued fractions

Let b0, ak ̸= 0, bk, k ∈ N, be real numbers or functions of a variable x. The infinite continued
fraction

D = b0 +
a1

b1 +
a2

b2 + . . .
+

ak

bk + . . .
can be written as follows:

b0 +

∞

K
k=1

ak
bk

= b0 +
a1

b1+

a2

b2+ · · ·+
ak

bk + · · ·
. (2.1)
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Analogously, the nth convergent of continued fraction, the nth approximation of the continued fraction
(2.1), can be shortly written as

Dn =
Pn

Qn
= b0 +

n

K
k=1

ak
bk

= b0 +
a1

b1+

a2

b2+ · · ·+
an

bn
. (2.2)

The values of the canonical numerator Pn and denominator Qn of the continued fraction (2.2) are
determined in terms of elements of the continued fraction b0, ak, bk, k ∈ N, by means of Wallis’ formulas
[12].

On the compact R ⊂ R, let us choose a set of nodes

X = {xi : xi ∈ R, xi ̸= xj , i ̸= j, i, j = 0, n}. (2.3)

Let the function f be defined at the nodes of the set X. The function f is interpolated by Thiele’s
interpolation continued fraction (T–ICF) [5, 13] of the form

Dn(x) =
Pn(x)

Qn(x)
= b0 +

n

K
i=1

x− xi−1

bi
, bi ∈ R, i = 0, n. (2.4)

T–ICF should satisfy the interpolation conditions

Dn(xi) = yi, xi ∈ X, yi = f(xi), i = 0, n. (2.5)

The coefficients of T–ICF (2.4) bi, i ∈ N0 = N ∪ {0}, are determined from the interpolation condi-
tions (2.5), or in terms of reciprocal divided differences, or in terms of reciprocal differences [5,10,13],
or from a recurrence relation in the form of a continued fraction [8]

b0 = y0, b1 =
x1 − x0
y1 − b0

, bk =
xk − xk−1

−bk−1 +

xk − xk−2

−bk−2 +

+ · · ·+
xk − x1
−b1 +

xk − x0
yk − b0

, k ∈ N2 = N\{1}.

It is known [10] that if the function f ∈ C(n+1)(R), then remaider term of T–ICF Rn(x) =
f(x)−Dn(x) is given by the formula

Rn(x) =

n∏
i=0

(x− xi)

(n+ 1)!Qn(x)

dn+1

dxn+1

(
f(x) ·Qn(x)

)∣∣∣
x=ξ

, ξ ∈ R. (2.6)

Theorem 2.1 ([8,11]). Let f ∈ C(n+1)(R). Let T–ICF (2.4) be constructed by values of the function
at points of set (2.3). Then

∣∣Rn(x)
∣∣ ≤ E1 =

fmax(bmax)
n

n∏
k=0

|x− xk|

(n+ 1)!|Qn(x)|

(
κn+1(ρ) +

r∑
m=1

(
n+1
m

) m!

b2mmin

×

×
r−m∑
k=0

(
n+k
m

)(
n−m−k
m+k

)
ρk
)
,
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where r =
[
n
2

]
, α = diamR, bmin = min

1≤i≤n
|bi|, bmax = max

1≤i≤n
|bi|, ρ =

α

b2min

,

fmax= max
0≤m≤r

max
x∈R

|f (n+1−m)(x)|, κn(ρ)=
(1+

√
1+4ρ)n−(1−

√
1+4ρ)n

2n
√
1 + 4ρ

.

The main result of the present work is the following proposition.

Theorem 2.2. Let f ∈ C(n+1)(R). Let T–ICF (2.4) be constructed by values of the function f at
points of set (2.3). Then

∣∣Rn(x)
∣∣ ≤ E2 =

fmax

n∏
k=0

|x− xk|

(n+ 1)! |T⟨1⟩
n (x)|

(
bnmax κn+1(ρ) +

r∑
k=1

(
n+1
k

)
bn−2k
max ×

×
n+1−2k∑
i1=1

κi1(ρ)

n+3−2k∑
i2=i1+2

κi2−i1−1(ρ) · · ·
n−3∑

ik−1=ik−2+2

κik−1−ik−2−1(ρ)×

×
n−1∑

ik=ik−1+2

κik−ik−1−1(ρ)κn−ik(ρ)

)
, (2.7)

where T
⟨1⟩
n (x) is a continuant which is defined in (4.2).

3. Continuant and its properties

Let b0, ai, bi, i ∈ N, be real numbers or functions. Consider the determinant

H⟨i⟩
n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

bi ai+1 0 0 . . . 0 0
−1 bi+1 ai+2 0 . . . 0 0
0 −1 bi+2 ai+3 . . . 0 0
0 0 −1 bi+3 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . bn−1 an
0 0 0 0 . . . −1 bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, i = 0, n, n ∈ N, (3.1)

which is called a continuant [14] and is briefly written as

H⟨i⟩
n = K

(
bi,

ai+1,

bi+1,

ai+2,

bi+2,

. . . ,

. . . ,

an−1,

bn−1,

an
bn

)
.

Continuant (3.1) as a partial case of the Hessenberg determinant satisfies the three-term recurrence
relation [15]

H⟨i⟩
m = bmH⟨i⟩

m−1 + amH⟨i⟩
m−2, m = i+ 1, n, H

⟨i⟩
i = bi, H

⟨i⟩
i−1 = 1. (3.2)

Theorem 3.1. If an element ak, i < k ≤ n, of the continuant H⟨i⟩
n is equal to zero, and the remaining

elements are nonzero, then

H⟨i⟩
n = H⟨k⟩

n · H⟨i⟩
k−1. (3.3)
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Proof. Since ak = 0, the recurrence relation (3.2) yields

H⟨i⟩
k = bkH

⟨i⟩
k−1 = H⟨k⟩

k H⟨i⟩
k−1,

H⟨i⟩
k+1 = bk+1H

⟨i⟩
k + ak+1H

⟨i⟩
k−1 = (bkbk+1 + ak+1)H

⟨i⟩
k−1 = H⟨k⟩

k+1H
⟨i⟩
k−1.

Hence, formula (3.3) is true for n = k and n = k + 1. Assume that relations (3.3) hold for n = m.
From (3.2), we get

H⟨i⟩
m+1 = bm+1H⟨i⟩

m + am+1H⟨i⟩
m−1 =

= bm+1H⟨k⟩
m H⟨i⟩

k−1 + am+1H⟨k⟩
m−1H

⟨i⟩
k−1 = H⟨k⟩

m+1H
⟨i⟩
k−1.

Hence, formula (3.3) holds for any n.

We now prove the following proposition.

Theorem 3.2. If elements of the continuant as ̸= 0, s = i, n, bs ̸= 0, s = i, k + i− 2, bt ̸= 0, t =
k + i, n, and bk+i−1 = 0, i ≤ n, k = 1, n− i, then the continuant

A⟨i,k⟩
n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

bi ai+1 . . . 0 0 0 . . . 0 0
−1 bi+1 . . . 0 0 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . bk+i−2 ak+i−1 0 . . . 0 0
0 0 . . . 0 0 ak+i . . . 0 0
0 0 . . . 0 −1 bk+i . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . 0 0 0 . . . bn−1 an
0 0 . . . 0 0 0 . . . −1 bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

= ak+iH
⟨i⟩
k+i−2H

⟨k+i+1⟩
n , where H⟨n+1⟩

n = H⟨i⟩
0 = 1, k = 1, n− i. (3.4)

Proof. Let k = 1. Then

A⟨i,1⟩
n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 ai+1 0 0 . . . 0 0 0
−1 bi+1 ai+2 0 . . . 0 0 0
0 −1 bi+2 ai+3 . . . 0 0 0
0 0 −1 bi+3 . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . bn−2 an−1 0
0 0 0 0 . . . −1 bn−1 an
0 0 0 0 . . . 0 −1 bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

If we expand the determinant successively in the 1st row and 1st column, we get A⟨i,1⟩
n =

ai+1H⟨i⟩
i−1H

⟨i+2⟩
n . For k = 2, we expand the determinant successively in the 2nd row and the 2nd

column. We get A(i,2)
n = ai+2H⟨i⟩

i H⟨i+3⟩
n . In the general case k = m, we expand the determinant
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successively in the mth row and mth column:

A⟨i,m⟩
n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

bi ai+1 . . . 0 0 0 . . . 0 0
−1 bi+1 . . . 0 0 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . bm+i−2 am+i−1 0 . . . 0 0
0 0 . . . 0 0 am+i . . . 0 0
0 0 . . . 0 −1 bm+i . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . 0 0 0 . . . bn−1 an
0 0 . . . 0 0 0 . . . −1 bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

= −am+i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

bi ai+1 . . . 0 0 0 . . . 0 0
−1 bi+1 . . . 0 0 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . bm+i−2 am+i−1 0 . . . 0 0
0 0 . . . 0 −1 am+i+1 . . . 0 0
0 0 . . . 0 0 bm+i+1 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . 0 0 0 . . . bn−1 an
0 0 . . . 0 0 0 . . . −1 bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

=−am+iam+i−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

bi ai+1 . . . 0 0 0 . . . 0
−1 bi+1 . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . bm+i−3 am+i−2 0 . . . 0
0 0 . . . 0 0 am+i+1 . . . 0
0 0 . . . 0 0 bm+i+1 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 0 0 0 . . . bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+

+am+i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

bi ai+1 . . . 0 0 0 0 . . . 0
−1 bi+1 . . . 0 0 0 0 . . . 0
...

...
...

. . .
...

...
...

. . .
...

0 0 . . . bm+i−3 am+i−2 0 0 . . . 0
0 0 . . . −1 bm+i−2 0 0 . . . 0
0 0 . . . 0 0 bm+i+1 am+i+2 . . . 0
0 0 . . . 0 0 −1 bm+i+2 . . . 0
...

...
. . .

...
...

...
...

. . .
...

0 0 . . . 0 0 0 0 . . . bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Taking (m − 2) first columns in the determinants and using the Laplace theorem [16], we obtain

A⟨i,m⟩
n = am+iH⟨i⟩

m+i−2H
⟨m+i+1⟩
n . Formula (3.4) is proved.

A continuant is invariant relative to the inversion of the order of elements [14], i.e.,

K
(
bi,

ai+1,

bi+1,

ai+2,

bi+2,

. . . ,

. . . ,

an−1,

bn−1,

an
bn

)
= K

(
bn,

an,

bn−1,

an−1,

bn−2,

. . . ,

. . . ,

ai+2,

bi+1,

ai+1

bi

)
.
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Theorem 3.3. If H⟨i⟩
n ̸= 0, where i = 0, 1, and if w = H⟨0⟩

n /H⟨1⟩
n , then

bn =

anK
(
−bn−2,

an−2,

−bn−3,

an−3,

−bn−4,

. . . ,

. . . ,

a3,

−b2,

a2,

−b1,

a1
w − b0

)
K
(
−bn−1,

an−1,

−bn−2,

an−2,

−bn−3,

. . . ,

. . . ,

a3,

−b2,

a2,

−b1,

a1
w − b0

) . (3.5)

Proof. Since w = H⟨0⟩
n /H⟨1⟩

n by assumptions of the theorem, we have

wK
(
bn,

an,

bn−1,

an−1,

bn−2,

. . . ,

. . . ,

a3,

b2,

a2
b1

)
= K

(
bn,

an,

bn−1,

an−1,

bn−2,

. . . ,

. . . ,

a2,

b1,

a1
b0

)
.

We now expand the determinants in the 1st column:

w bnK
(
bn−1,

an−1,

bn−2,

. . . ,

. . . ,

a3,

b2,

a2
b1

)
+ w anK

(
bn−2,

an−2,

bn−3,

. . . ,

. . . ,

a3,

b2,

a2
b1

)
=

= bnK
(
bn−1,

an−1,

bn−2,

. . . ,

. . . ,

a2,

b1,

a1
b0

)
+ anK

(
bn−2,

an−2,

bn−3,

. . . ,

. . . ,

a2,

b1,

a1
b0

)
.

From whence, we get

bn =

− anK
(
bn−2,

an−2,

bn−3,

. . . ,

. . . ,

a2,

b1,

a1
b0 − w

)
K
(
bn−1,

an−1,

bn−2,

. . . ,

. . . ,

a2,

b1,

a1
b0 − w

) .

Let us take out the factor (−1) from odd rows and even columns of the determinants of the numerator
and denominator. We get (3.5).

4. Interrelation of a continuant and an interpolation continued fraction

It is known [15] that the nth convergent Dn of the continued fraction (2.1) can be presented in the
form of a ratio of continuants, i.e.,

Dn =
Pn

Qn
=

H⟨0⟩
n

H⟨1⟩
n

. (4.1)

Introduce the following continuants:

T⟨i⟩
m (x) = K

(
bi,

x− xi,

bi+1,

x− xi+1,

bi+2,

. . . ,

. . . ,

x− xm−1

bm

)
, i < m. (4.2)

From (4.1), we have that T–ICF (2.4) can be written as the ratio of continuants of the form (4.2):
Dn(x) = T

⟨0⟩
n (x)/T

⟨1⟩
n (x). In addition, for arbitrary value of k = 1, n, the following relation holds:

Dn(xk) =
T

⟨0⟩
k (xk)

T
⟨1⟩
k (xk)

. (4.3)

Relation (4.3) follows directly from Theorem 3.1. Since the element ak+i of the continuant T
⟨i⟩
n (xk), i =

0, 1, is equal to zero, (3.3) yields

Dn(xk) =
T

⟨0⟩
k (xk)T

⟨k+1⟩
n (xk)

T
⟨1⟩
k (xk)T

⟨k+1⟩
n (xk)

=
T

⟨0⟩
k (xk)

T
⟨1⟩
k (xk)

.
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Theorem 4.1. The coefficients of T–ICF (2.4) are determined by the formulas

b0 = y0, b1 =
x1 − x0

y1 − b0
, b2 =

∣∣∣∣x2 − x1 0
−1 y2 − b0

∣∣∣∣∣∣∣∣−b1 x2 − x0
−1 y2 − b0

∣∣∣∣ , (4.4)

bk =

(xk − xk−1)K
(
−bk−2,

xk − xk−3,

−bk−3,

. . . ,

. . . ,

xk − x1,

−b1,

xk − x0
yk − b0

)
K
(
−bk−1,

xk − xk−2,

−bk−2,

. . . ,

. . . ,

xk − x1,

−b1,

xk − x0
yk − b0

) , (4.5)

if k = 3, n.

Proof. From the interpolation condition, we have yk = Dn(xk), k = 0, n. It follows from (4.3) that

yk = T
⟨0⟩
k (xk)/T

⟨1⟩
k (xk), k = 0, n. According to Theorem 3.3, the coefficient bk is given by formula

(3.5), where ai = xk − xi−1, i = 1, k. From whence, we get (4.4)–(4.5).

5. Formula for the remainder term of T–ICF

Let us determine the remainder term of T–ICF in terms of a continuant. Consider the determinants[
t
⟨1⟩
n (x)

]
i
, where i = 1, n. They are formed from the continuant T⟨1⟩

n (x) by the replacement of elements
of the ith row by their derivatives. It is obvious that the ith row

[
t
⟨1⟩
n (x)

]
i
includes the single nonzero

element equal to 1 on the cross with the (i + 1)th column, i = 0, n− 1. Obviously,
[
t
⟨1⟩
n (x)

]
n
≡ 0,

since the last row of the determinant contains only zeros. Let
[
t
⟨1⟩
n (x)

]
ij
, i, j = 1, n, be determinants

formed from the continuant T
⟨1⟩
n (x) by the replacement of elements of the ith and jth rows by their

derivatives. The following identities hold:[
t⟨1⟩n (x)

]
ii
≡
[
t⟨1⟩n (x)

]
i,n

≡ 0, i = 1, n− 2,[
t⟨1⟩n (x)

]
i,i+1

≡ 0, i = 1, n− 1.
(5.1)

The first identity (5.1) is obvious, since each determinant contains one row with zero elements. We get
the second identity, by expanding the determinants by the Laplace rule in the sum of products of the
second-order minors that are contained in the ith and (i+ 1)th rows by their cofactors.

Let
[
t
⟨1⟩
n (x)

]
i1i2...ik

be the determinant formed from the continuant T⟨1⟩
n (x) by the replacement of

elements of the rows i1, i2, . . . , ik by their derivatives.

Theorem 5.1. (A) The derivative of the kth order, k = 1, [n/2], of the continuant T
⟨1⟩
n (x) is equal

to (
T⟨1⟩

n (x)
)(k)

= k!

n+1−2k∑
i1=1

n+3−2k∑
i2=i1+2

· · ·
n−1∑

ik=ik−1+2

[
t⟨1⟩n (x)

]
i1i2...ik

. (5.2)

(B) If k > [n/2], then
(
T

⟨1⟩
n (x)

)(k) ≡ 0.

Proof. (A) Formula (5.2) can be proved by induction. Since the identity
[
t
⟨1⟩
n (x)

]
n
≡ 0 holds, the

rule of differentiation of determinants for k = 1 yields

(
T⟨1⟩

n (x)
)(1)

=

n−1∑
i=1

[
t⟨1⟩n (x)

]
i
,
[
t⟨1⟩n (x)

]
n
≡ 0.
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The second derivative of the continuant T
⟨1⟩
n (x) is

(
T⟨1⟩

n (x)
)(2)

=

n∑
i2=1

n−1∑
i1=1

[
t⟨1⟩n (x)

]
i1i2

.

Accounting for the symmetry of the determinants
[
t
⟨1⟩
n (x)

]
ij
=
[
t
⟨1⟩
n (x)

]
ji
and basing on relation (5.1),

we have (
T⟨1⟩

n (x)
)(2)

= 2 ·
n−3∑
i1=1

n−1∑
i2=i1+2

[
t⟨1⟩n (x)

]
i1i2

.

Assume that (5.2) holds for k = m− 1, where m− 1 < [n/2].

We now find the derivative of the mth order of the continuant T
⟨1⟩
n (x). We have

((
T⟨1⟩

n (x)
)(m−1)

)′
= (m− 1)!

n∑
im=1

n+3−2m∑
i1=1

· · ·
n−1∑

im−1=im−2+2

[
t⟨1⟩n (x)

]
i1...im

.

In view of (5.1) and the relations[
t⟨1⟩n (x)

]
i1i2...im−1im

=
[
t⟨1⟩n (x)

]
i2i1...im−1im

= . . . =
[
t⟨1⟩n (x)

]
imim−1...i2i1

,

we get (
T⟨1⟩

n (x)
)(m)

= m!

n+1−2m∑
i1=1

n+3−2m∑
i2=i1+2

· · ·
n−1∑

im=im−1+2

[
t⟨1⟩n (x)

]
i1i2...im

.

Hence, formula (5.2) holds for any 1 ≤ m ≤ [n/2].

(B) According to item (A), the derivative of the order l = [n/2] of the continuant T
⟨1⟩
n (x) is given

by formula (5.2).

We now find the derivative of the (l + 1)th order:

(
T⟨1⟩

n (x)
)(l+1)

= l!
n∑

k=1

n+1−2l∑
i1=1

n+3−2l∑
i2=i1+2

· · ·
n−1∑

il=il−1+2

[
t⟨1⟩n (x)

]
i1i2...imk

.

According to (5.1), all determinants on the right-hand side are zero.

Theorem 5.2. Let the function f ∈ C(n+1)(R) be interpolated by its values at points of set (2.3) for
T–ICF (2.4). Then there exists ξ ∈ IntR such that the remainder term Rn(x) = f(x) − Dn(x) is
determined by the formula

Rn(x) =

n∏
i=0

(x− xi)

(n+ 1)!T
⟨1⟩
n (x)

(
f (n+1)(x)T⟨1⟩

n (x) +

r∑
k=1

(
n+1
k

)
f (n+1−k)(x)×

×
n+1−2k∑
i1=1

n+3−2k∑
i2=i1+2

· · ·
n−1∑

ik=ik−1+2

[
t⟨1⟩n (x)

]
i1i2...ik

)∣∣∣∣∣
x=ξ

, r = [n/2]. (5.3)
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Proof. We have Rn(x) = f(x)−T
⟨0⟩
n (x)/T

⟨1⟩
n (x). Consider the auxiliary function

F (x) = f(x)T⟨1⟩
n (x)−T⟨0⟩

n (x)− λ(x− x0)(x− x1) . . . (x− xn). (5.4)

According to the interpolation conditions (2.5), the function F is equal to zero at the (n+ 1)th point
xi ∈ R, i = 0, n. If the parameter λ is chosen in the form

λ =
f(x∗)T

⟨1⟩
n (x∗)−T

⟨0⟩
n (x∗)

(x∗ − x0)(x∗ − x1) . . . (x∗ − xn)
, where x∗ ∈ R\X ,

then the function F is equal to zero at (n+2) points of the extended set X̃ = X∪{x∗} ⊂ R. According
to Rolle’s generalized theorem [1], there exists a point ξ ∈ IntR such that F (n+1)(ξ) = 0 or

dn+1

dxn+1

(
f(x)T⟨1⟩

n (x)
)∣∣∣

x=ξ
− dn+1

dxn+1

(
T⟨0⟩

n (x)
)∣∣∣

x=ξ
− (n+ 1)!λ = 0.

Theorem 5.1 implies that
(
T

⟨0⟩
n (x)

)(n+1) ≡ 0. Using the formula for a derivative of the (n+1)th order
of the product of two functions, we get

dn+1

dxn+1

(
f(x) ·T⟨1⟩

n (x)
)
=

r∑
k=0

(
n+1
k

)
f (n+1−k)(x)

(
T⟨1⟩

n (x)
)(k)

.

Then

λ =
1

(n+ 1)!

r∑
k=0

((
n+1
k

)
f (n+1−k)(x)×

×
n+1−2k∑
i1=1

n+3−2k∑
i2=i1+2

· · ·
n−1∑

ik=ik−1+2

[
t⟨1⟩n (x)

]
i1i2...ik

)∣∣∣
x=ξ

.

Since x∗ is arbitrary point from R, we divide (5.4) by T
⟨1⟩
n (x) and arrive at (5.3).

Remark 5.1. The formula for a remainder term (5.3) is given in terms of the continuant T
⟨1⟩
n (x)

and its derivatives and differs from formula (2.6) for a remainder term. This gives possibilities to
substantiate the more exact estomates of the remainder term of T–ICF.

6. Proof of Theorem 2.2

Here, we will prove the main result of the present work, namely, Theorem 2.2.

Proof. We present formula (5.3) from Theorem 5.2 in another form. To this end, we write the de-

terminants
[
t
⟨1⟩
n (x)

]
i1i2...ik

in terms of the continuant T
⟨l⟩
s (x) for some values of l and s. We note

that the ith row of the determinant
[
t
⟨1⟩
n (x)

]
i
, for i = 1, n− 1, contains zeros except for one ele-

ment which is placed on the intersection with the (i + 1)th column and equals 1. Then, according

to Theorem 3.2, we have
[
t
⟨1⟩
n (x)

]
i
= T

⟨1⟩
i−1(x)T

⟨i+2⟩
n (x). In the determinant

[
t
⟨1⟩
n (x)

]
i1i2

, the single

nonzero element of the i1th row is equal to 1 and is located in the (i1 + 1)th position. Therefore,

according to the same theorem, we have
[
t
⟨1⟩
n (x)

]
i1i2

= T
⟨1⟩
i1−1(x)A

⟨i1+2,i2⟩
n (x), where A

⟨i1+2,i2⟩
n (x)

follows from A⟨i1+2,i2⟩
n (x) by the replacement of ai+1 by x − xi. The single nonzero element of the

695



(i2 − i1 − 1)th row of the determinant A
⟨i1+2,i2⟩
n (x) is equal to 1 and occupies the (i2 − i1)th position.

Then
[
t
⟨1⟩
n (x)

]
i1i2

= T
⟨1⟩
i1−1(x)T

⟨i1+2⟩
i2−1 (x)T

⟨i2+2⟩
n (x). Analogously, we can show that

[
t⟨1⟩n (x)

]
i1i2...is

= T
⟨1⟩
i1−1(x)T

(i1+2)
i2−1 (x) · · ·T(is−1+2)

is−1 (x)T(is+2)
n (x), (6.1)

where s = 1, r,T
(s)
s−1(x) = 1.

With regard for (6.1), formula (5.3) takes the form

Rn(x) =

n∏
k=0

(x− xk)

(n+ 1)!T
⟨1⟩
n (x)

(
f (n+1)(ξ)T⟨1⟩

n (ξ) + f (n)(ξ)
(
n+1
1

)
×

×
n−1∑
i=1

T
⟨1⟩
i−1(ξ)T

⟨i+2⟩
n (ξ) +

(
n+1
2

)
f (n−1)(ξ)

n−3∑
i1=1

n−1∑
i2=i1+2

T
⟨1⟩
i1−1(ξ)T

⟨i1+2⟩
i2−1 (ξ)×

×T⟨i2+2⟩
n (ξ) + · · ·+

(
n+1
r

)
f (n+1−r)(ξ)

n+1−2r∑
i1=1

n+3−2r∑
i2=i1+2

· · ·
n−1∑

ir=ir−1+2

T
⟨1⟩
i1−1(ξ)×

×T
⟨i1+2⟩
i2−1 (ξ) · · ·T⟨ir−1+2⟩

ir−1 (ξ)T⟨ir+2⟩
n (ξ)

)
. (6.2)

We now substantiate estimate (2.7). Let us evaluate (6.2) in modulus. We have

∣∣Rn(x)
∣∣ ≤

n∏
k=0

|x− xk|

(n+ 1)!
∣∣T⟨1⟩

n (x)
∣∣(|f (n+1)(ξ)|

∣∣T⟨1⟩
n (ξ)

∣∣+ (n+1
1

)
|f (n)(ξ)|×

×
n−1∑
i=1

∣∣T⟨1⟩
i−1(ξ)

∣∣∣∣T⟨i+2⟩
n (ξ)

∣∣+ (n+1
2

)
|f (n−1)(ξ)|

n−3∑
i1=1

n−1∑
i2=i1+2

∣∣T⟨1⟩
i1−1(ξ)

∣∣×
×
∣∣T⟨i1+2⟩

i2−1 (ξ)
∣∣∣∣T⟨i2+2⟩

n (ξ)
∣∣+ · · ·+

(
n+1
r

)
|f (n+1−r)(ξ)|

n+1−2r∑
i1=1

n+3−2r∑
i2=i1+2

· · ·

· · ·
n−1∑

ir=ir−1+2

∣∣T⟨1⟩
i1−1(ξ)

∣∣∣∣T⟨i1+2⟩
i2−1 (ξ)

∣∣ · · · ∣∣T⟨ir−1+2⟩
ir−1 (ξ)

∣∣∣∣T⟨ir+2⟩
n (ξ)

∣∣).
In [8], it was proved that

∣∣T⟨s⟩
t (x)

∣∣ < (bmax)
t−s+1κt−s+2(ρ), s ≤ t. Then

∣∣Rn(x)
∣∣ ≤ fmax

n∏
k=0

|x− xk|

(n+ 1)!
∣∣T⟨1⟩

n (x)
∣∣((bmax)

nκn+1(ρ) +
(
n+1
1

)
(bmax)

n−2×

×
n−1∑
i=1

κi(ρ)κn−i(ρ) +
(
n+1
2

)
(bmax)

n−4
n−3∑
i1=1

κi1(ρ)

n−1∑
i2=i1+2

κi2−i1−1(ρ)×
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×κn−i2(ρ) +
(
n+1
3

)
(bmax)

n−6
n−5∑
i1=1

κi1(ρ)
n−3∑

i2=i1+2

κi2−i1−1(ρ)×

×
n−1∑

i3=i2+2

κi3−i2−1(ρ)κn−i3(ρ) + · · ·+
(
n+1
r

)
(bmax)

n−2r
n+1−2r∑
i1=1

κi1(ρ)×

×
n+3−2r∑
i2=i1+2

κi2−i1−1(ρ) · · ·
n−1∑

ir=ir−1+2

κir−ir−1−1(ρ)κn−ir(ρ)
)
.

Estimate (2.7) is proved.

7. Numerical examples

To illustrate the efficiency of estimate E2 of the remainder term of T–ICF (5.3) and to compare
it with estimate E1 from Theorem 2.1 for the remainder term of T–ICF in the form (2.6), we now
consider some numerical examples.

As interpolation nodes, we choose the roots of a Chebyshev polynomial of the fist kind which
are belonging to R. It is well known [1] that, for such choice of nodes,

∏n
k=0 |x − xk| ≤ αn+1

22n+1 , α =

diamR. In addition, we assume that the coefficients bi, i = 1, n, of T–ICF (2.4) satisfy the Śleszyński–
Pringsheim condition, i.e., |bi| ≥ α+ 1, i = 1, n.

In [8], it was substantiated that if the elements ai(x), bi(x), i = 1, n, of a continued fraction
Kn

i=1(ai(x)/bi(x)) satisfy the conditions |ai(x)| ≤ α, |bi(x)| ≥ α + 1, i = 1, n, x ∈ R, then Qn(x)

and T
⟨1⟩
n (x) satisfy the inequality

|Qn(x)| ≥ Λn, |T⟨1⟩
n (x)| ≥ Λn, where Λn =

{
αn+1−1
α−1 , α ̸= 1,

n+ 1, α = 1.

If the roots of a Chebyshev polynomial of the fist kind are chosen as nodes, the coefficients of T–ICF
satisfy the condition |bi| ≥ α+ 1, i = 1, n, and estimate E1 takes the form

E1 =
fmaxb

n
maxα

n+1

22n+1Λn(n+ 1)!

(
κn+1(ρ) +

r∑
m=1

(
n+1
m

) m!

b2mmin

r−m∑
k=0

(
n+k
m

)(
n−m−k
m+k

)
ρk
)
,

where κn(ρ), fmax, bmin, bmax, ρ, r, α are defined in the condition of Theorem 2.1.

Analogously, estimate E2 will be overwritten

E2 =
fmax · αn+1

22n+1Λn(n+ 1)!

(
bnmaxκn+1(ρ) +

r∑
k=1

(
n+1
k

)
bn−2k
max ×

×
n+1−2k∑
i1=1

κi1(ρ)

n+3−2k∑
i2=i1+2

κi2−i1−1(ρ) · · ·
n−3∑

ik−1=ik−2+2

κik−1−ik−2−1(ρ)×

×
n−1∑

ik=ik−1+2

κik−ik−1−1(ρ)κn−ik(ρ)

)
.
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Table 9.1: Function 2x, segment R = [−0.45, 0.0]

n bmin bmax E1 E2

4 1.495319 4.744028 0.37622386 · 10−03 0.68695834 · 10−04

5 1.479851 8.216546 0.94634967 · 10−03 0.65432811 · 10−04

6 1.470265 8.027247 0.33122929 · 10−03 0.97885121 · 10−05

7 1.463939 11.569403 0.10333131 · 10−02 0.10578746 · 10−04

8 1.459553 11.356674 0.43434560 · 10−03 0.16740396 · 10−05

9 1.456393 14.932188 0.15610864 · 10−02 0.19200421 · 10−05

10 1.454042 14.705507 0.75069601 · 10−03 0.31442508 · 10−06

11 1.452246 18.299149 0.29980084 · 10−02 0.37312679 · 10−06

12 1.450844 18.063648 0.16040150 · 10−02 0.62559307 · 10−07

The values obtained in computer experiments are given in the tables. In the first column of the table,
we indicate the number of interpolation nodes n. The second and third columns show, respectively,
the values of bmin and bmax, and the fourth and fifth columns contain estimates E1 and E2.

Example 1. The function y = 2x is interpolated on R = [−0.45; 0.0]. The derivative of the nth
order of the function equals y(n) = 2x(ln 2)n. It is easy to see that, among derivatives of the order
k, k = n+ 1− r, n+ 1, the derivative of the (n+1− r)th order takes the highest value on the segment
R on its right border, i.e., fmax = (ln 2)n+1−r. The results given by Table 9.1 show that estimate
E1 significantly concedes to estimate E2. In addition, the values of E2 decrease, as the number of
interpolation nodes increases.

Example 2. Consider the problem of interpolation of the function y =
√
x on R = [1,1; 1,7] T–ICF

(2.4). Note that the nth derivative of the function is defined by the formula

(√
x
)(n)

=
(−1)n+1(2n− 3)!!

2n ·
√
x2n−1

.

Therefore, the derivative of the (n+1)th order takes the value highest in modulus among the derivatives
of order k, with k = n+ 1− r, n+ 1 on the left edge of the segment R, i.e..,

fmax =
(2n− 1)!!

2n+1
(√

1,1
)2n+1 ,

The results presented in Table 9.2 show the advantage of estimate E2 over estimate E1. Like the
previous example, the value of estimate E2 decreases, as the number of interpolation nodes increases.

8. Conclusions

We have established new properties of a continuant which are used in studies of the problem of
interpolation of functions of one real vatiable on a compact set by Thiele’s interpolation continued
fraction. A new form of the formula for the remainder term of T–ICF is obtained, and some estimates
of the remainder term of T–ICF are made. The representation of the remainder term in terms of
coninuants allows one to get other estimates of the remainder term of T–ICF.

The author sincerely thanks Academician of the NANU V. L. Makarov for valuable advices, useful
remarks, and his interest in this work.
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Table 9.2: Function
√
x, segment R = [1.1, 1.7]

n bmin bmax E1 E2

7 2.124195 2.585934 0.66350373 · 10−04 0.21285556 · 10−04

8 2.118777 2.590427 0.48854910 · 10−04 0.11004596 · 10−04

9 2.114851 2.593664 0.38284594 · 10−04 0.58537385 · 10−05

10 2.111918 2.596071 0.31796009 · 10−04 0.31841731 · 10−05

11 2.109671 2.597909 0.27728209 · 10−04 0.17634902 · 10−05

12 2.107913 2.599344 0.25302938 · 10−04 0.99125665 · 10−06

13 2.106512 2.600485 0.24036410 · 10−04 0.56415945 · 10−06

14 2.105378 2.601408 0.23704991 · 10−04 0.32450711 · 10−06

15 2.104447 2.602164 0.24191062 · 10−04 0.18837630 · 10−06

16 2.103673 2.602791 0.25491251 · 10−04 0.11023125 · 10−06

17 2.103024 2.603317 0.27672961 · 10−04 0.64960423 · 10−07

18 2.102474 2.603763 0.30896745 · 10−04 0.38522821 · 10−07

19 2.102011 2.604144 0.35416462 · 10−04 0.22973370 · 10−07

20 2.101615 2.604472 0.41625056 · 10−04 0.13769827 · 10−07

21 2.066126 2.604756 0.65042318 · 10−04 0.85612464 · 10−08
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