237 Small Triangle Meeting — Medzilaborce, October 24-27, 2023

Lattice stability and features of the
dispersion of the phonon spectrum in
different approximations of the force

interaction

I. I. Nebola!, A. F. Katanytsia', D. I. Kaynts', I. M. Shkirta?,
A. V. Korneichuk!

L Uzhhorod National University, Faculty of Physics, 3, Narodna Sq.,
Uzhhorod, Ukraine

E-mail: ivan.nebola@Quzhnu.edu.ua

2 Mukachevo State University, 26, Uzhhorodska str., Mukachevo, Ukraine

Abstract

The consistent inclusion of additional physical parameters (color, phase,
sign of charge, spin, etc.) into the symmetrical description has resulted to the
creation of the theory of color symmetry [1] and the concept of superspace
symmetry [2]. Among the types of generalized symmetry, the concept of
superspace symmetry is quite convenient and visual when building (3 + d)-
dimensional models describing the structure of complex crystals and systems
united by a single metric and the scale of the function of the protocrystal
carrier [3]. Formation of the (3 + d)-dimensional metric of a protocrystal
is based on its higher symmetry and is associated with an additional d-
dimensional space, which allows the description of real objects (crystals and
systems) as natural (saxsaxsa) superlattices.

1 Calculation method

The compositional features of the implementation of complex crystals and sys-
tems based on the mechanism of filling with atoms of various types and vacancies,
translationally equivalent positions, given by the basis of the protocrystal, are
covered by the concept of superspace symmetry. At the same time, various com-
binations of the bases of the protocrystal and the real physical object along with
all possible variants of the compositional filling of the positions can be taken into
account. The use of a complete set of modulation vectors makes it possible to
determine the amplitudes of the mass modulation functions and, based on them,
to generate a generalized dynamic matrix (GDM) of a family of complex crystals
in the form of a superposition of the protocrystal dynamic matrices determined
at various points of the Brillouin zone (ZB), related by the modulation vectors,
and the mass perturbation matrix described by amplitudes of mass modulation
functions.

A number of families of crystal structures are characterized by a combination
of several crystallographic orbits with their partial filling with atoms of the same
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type. As an example, the argyrodite family [4]. Let’s consider the indicated situa-
tion based on a simpler model. Let’s choose for analysis a model of crystal struc-
tures of the perovskite family (Fig. 1), which is characterized by an equidistant
arrangement of atoms of various types. In the concept of superspace symmetry,
the perovskite class can be considered as a natural (2ax2ax2a) superlattice [5].

Figure 1: Crystal structure of type ABX3 of an ideal cubic perovskite.

Since we are interested in the analysis of the situation with partial filling of
different crystallographic orbits with atoms of the same type, we will describe the
structure of perovskite in the basis of the (4ax4ax4a)-superlattice, introducing a
number of additional crystallographic orbits into consideration. Thus, in addition
to the composite superlattice obtained by modulating a monatomic PCG with the
help of 8 modulation vectors [5] for the (2ax2ax2a)-superlattice, let’s consider the
modulated monatomic PCG with the help of 64 modulation vectors in the basis
of the (4dax4ax4a)-superlattice.

Solving the matrix equation with respect to w?(k) allows us to define the dis-
persion dependences of the phonon spectrum, and taking into account different
options for compositional filling allows us to trace their genesis [6].

Dispersion curves of the phonon spectrum of complex crystals of the perovskite
structural type in the concept of superspace symmetry are defined as solutions of
the matrix equation under the condition that the determinant is equal to zero,
which has the form:

|Dap(k + q;) — w*0apdi; — w?pi—jy0as| =0, (1)
where D,s(k+q;) are the dynamic matrices of the monoatomic protocrystal (PCL),
defined at (k + ¢;) points of ZB for the BaTiO3 crystal: (i = 1,...,8) — in the
(2ax2ax2a) basis, (¢ = 1,...,64) — in the basis of the (4ax4ax4a)-superlattice,
respectively, p(;_;) = pi(q;, A*b;;) are the amplitudes of the mass modulation
function given for modulation vectors (¢; — ¢;), o, 8 — x,y, 2z, k — wave vector, g;
— modulation vectors [7].

The dynamic matrices of the protocrystal Dyg(k + ¢;) are defined from the
relation

nNanp

Dap(k+gi) = Y an—L(1—¢lktam), (2)

(n#0)

n2
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where «, is the force constant between the atom at the position (0,0,0) and its n
neighbor, n,,ng are the projections of the vector 7 on the a, 8 axis.

The calculation of phonon mode frequencies can be obtained by equating to
zero the determinant written in a slightly different form [7]:

1087 (k — i, A*b;) — w?dapdi; — w?p(i—j)das] =0, )

where p( )(k —qi, A™b};) = pg ) are the amplitudes of the modulation functions
of UDM of a complex crystal.

n

DT (k + ;) Z — qi, ATb};)e" T, (4)

with respect to the amplitudes of the modulation functions p( ) of the dynamic
matrix, we obtain solutions in the form of a superposition of the dynamic matrices
defined for each of the n positions: for (2ax2ax2a)-superstructures n = 8; for
(4dax4ax4a)-superstructures n = 64.

The implementation of a step-by-step complication of the description of real
crystal structures by choosing the most obvious (3 + d)-dimensional bases allows
us to introduce a (3 + d)-dimensional superspace, which covers the possibility of
filling of all positions of the PCL structures with (saxsaxsa)-superlattices.

The description of crystal formations of cubic syngonia with (saxsaxsa)-superlattices
is contained in (3 + d)-dimensional bases [5]:

direct:
ay = (a,0,0,—b/s,0,0);
as = (0,a,0,0,—b/s,0);
az = (0,0,a,0,0,—b/s);
as = (0,0,0,5,0,0): (5)
as = (0,0,0,0,b,0);
as = (0,0,0,0,0,b),

and reciprocal:

ai = (27/a,0,0,0,0,0);

a3 = (0,27/a,0,0,0,0);

a3 = (0,0,27/a,0,0,0);

a; = (27/sa,0,0,27/b,0,0); (6)
ai = (0,27/sa,0,0,27/b,0);

ag = (0,0,27/sa,0,0,27/b).

The (3 4 d)-dimensional description of BaTiOg crystals with a (2ax2ax2a)-
super /-lattice covers a set of eight modulation vectors, which can be divided into
4 stars:

1. (0,0,0) — dimensionality one;

2. (m/a,m/a,0) — dimensionality three;
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3. (m/a,m/a,m/a) — dimensionality one;

4. (m/a,0,0) — dimensionality three.

They correspond to four orbits defined by radius vectors: rr; = (0,0,0), ro =
2a(1/2,0,0), 750 = 2a(1/2,1/2,1/2), rvee = 2a(1/2,1/2,0).

The Fig. 1 shows two equivalent setups for describing the structure of the
BaTiOj3 crystal, which demonstrate the equivalence of the orbits ro = 2a(1/2,0,0)
and 7y = 2a(1/2,1/2,0). Obviously, the multiplication period of the composite
superlattice is equal to 2.

Figure 2: Structure of BaTiOg3 crystal: a) with (2ax2ax2a)-superlattice; b) with
(4dax4ax4a)-superlattice.

When transitioning from the BaTiOg crystal structure with (2ax2ax2a)-superlattice
to that with the (4ax4ax4a)-superlattice (Fig. 2), the volume of the direct lattice
increases by 8 times, and the volume of the Brillouin zone decreases by 8 times,
accordingly (Fig. 3).

Based on the PCL base, the full set of 64 combinations of modulation vectors
can be divided into 10 stars [7]:

(0,0,0) — dimensionality one;

(7/2a,0,0) — dimensionality six;
(m/a,0,0) — dimensionality three;
(m/a,m/a, 7/a) — dimensionality one;
(w/a,m/a,0) — dimensionality three;
(m/2a,7/2a,m/2a) — dimensionality eight;
(r/2a,m/a,m/a) — dimensionality six;
(7/2a,m/2a,0) — dimensionality twelve;

9. (7/2a,7/2a,7/a) — dimensionality twelve;

10. (7/2a,m/a,0) — dimensionality twelve.

The phonon spectra were calculated in the Maple software environment. Fig. 4
shows the calculated model phonon spectrum of BaTiO3 crystal with a (2ax2ax2a)-
superlattice in the approximation of an equidistant force field along the X — I" —
M — R — I lines with taking into account the interaction within the six first
coordination groups for an ideal structure.

O NSO W=
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Figure 3: Transformation of the ZB PCL with a period a (red lines) when transi-

tioning to (2ax2ax2a)-superlattice (blue lines), to (4ax4ax4a)-superlattice (green
lines) 2.
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Figure 4: Phonon spectrum of BaTiOj3 crystal with (2ax2ax 2a)-superlattice (ideal
structure) (a3 = 220 (N/m), as = 110.5 (N/m), ag = 10 (N/m), ay =5 (N/m),
as = 3.5 (N/m), ag =2 N/m)).

The Fig. 5 shows the model phonon spectrum of BaTiOj3 crystal with a (2ax2ax2a)-
superlattice for the case of a structure with two partially filled equivalent orbits
(0,a,0) and (a,0,a) with oxygen atoms.

The Fig. 6 shows the change in the dispersion dependences in the direction
of I' — R of ZB in the (4ax4ax4a)-metric when the orbit (2a,2a,0) is populated
with oxygen atoms (ideal structure) (a), the orbits are partially populated (two
atoms are localized in a three-fold orbit (2a,2a,0), and one — in a six-fold orbit
(2a,2a,a) (b), and two atoms are localized in a three-fold orbit (2a,2a,0), and
one — in a twelve-fold orbit (2a,a,0) (¢)).
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Figure 5: Model phonon spectrum of BaTiOgcrystal with (2ax2ax2a)-superlattice
(case of structure with two partially filled orbits with oxygen atoms).
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Figure 6: Dispersion dependences of the phonon spectrum of the BaTiO3 crystal
in the metric (dax4ax4a). left) ideal structure, middle) localization of one oxygen
atom in the (2a, 2a, a) orbit, right) localization of one oxygen atom in the (2a, a,0)
orbit.

Table 1: Coordinates of occupied positions in the (4ax4ax4a) superlattice and
values of model force constants at the distances for the ideal structure of BaTiO3
crystal.

Ideal structure | Relation (position 1)—(position 2) | Value of model force constant «;(N/m)
Ba(0,0,0) (0,0,0 - (2a,0,0) az = 220(N/m)
0(22,0,0) (0,0,0) - (2a,2a,0) as = 110(N/m)
0(0,2a,0) (0,0,0) - (2a,2a,2a) a1z = 10(N/m)
0(0,0,2a)
Ti(2a,2a,2a)

Tables 1, 2, 3 show the coordinates of the occupied positions in the (4dax4ax4a)-
superlattice and the values of the model force constants at the distances for various
constructions of the BaTiOg crystal structure.
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Table 2: Coordinates of occupied positions in the (4dax4ax4a) superlattice and
values of model force constants at the distances for the structure of BaTiO3 crystal

(construction 1).

Construction 1

Relation (position 1)—(position 2)

Value of model force constant a;(N/m)

Ba(0,0,0)
0(2a,0,2a)
0(0,2a,2a)
0O(2a,2a,a)

Ti(2a,2a,2a)

(0,0,0) - (a,0,0)
(OaOaO) - (2&,0,0)
(07030) - (2&,&,0)
(0,0,0) - (2a,2a,0)
(0,0,0) - (2a,2a,a)

(0,0,0) - (2a,2a,2a)

a1 = 70(N/m)
a4 = 220(N/m)
as = 100(N/m)
ag = 10(N/m)
ag = 4(N/m)
a2 = 10(N/m)

Table 3: Coordinates of occupied positions in the (4ax4axd4a)-superlattice and
values of model force constants at the distances for the structure of BaTiO3 crystal

(construction 2).

Construction 2

Relation (position 1)—(position 2)

Value of model force constant a;(N/m)

Ba(0,0,0)
0(2a,a,0)
0(2a,0,2a)
0(0,2a,2a)

(0,0,0) - (2a,0,0)
(0,0,0) - (2a,a,0)
(0,0,0) - (2a,2a,0)
(0,0,0) - (2a,2a,a)

ag = 220(N/m)

as = 100(N/m)
ag = 10(N/m)
a9 = 4(N/m)

Ti(2a,2a,2a)

2 Conclusions

The performed studies demonstrated a slight rearrangement of the phonon
spectrum of the BaTiOg3 crystal when the population changes between equivalent
orbits in the (2ax2ax2a)-metric and a rather significant rearrangement when the
population changes between orbits of different multiplicity in the (4ax4ax4a)-
metric. Note that the model calculations in the (4ax4ax4a)-metric are related
with the introducing into consideration the additional model force constants that
specify the force interaction at additional distances. In the case of the (2ax2ax2a)-
metric, additional force constants do not arise, since they are all included into the
consideration of the ideal structure. What is interesting, at the same time, is the
almost absent effect on the realization of the low-frequency part of the spectrum
in the (4dax4ax4a)-metric and the significant restructuring of the high-frequency
branches of the phonon spectrum. Along with this, modeling in the (4ax4ax4a)-
metric is related with a significantly smaller value of the "jump" distance of oxygen
atoms between the considered orbits.
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