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Abstract

The e�ciency of combining the concept of superspatial symmetry and the
ideas of the lattice model for the calculation of the model phonon spectra
of complex crystalline formations is shown. 3 + 3 - dimensional bases, sets
of modulation vectors and (4 × 4a × 4a) lattice model for the description
of crystal structure are presented and calculations of model phonon spectra
and state densities of Nb3Sn and Nb3Ge structures at di�erent combinations
of force constants are given. As a result of the analysis it is shown that at
the choice of certain combinations of power constants, mainly α4, α5 and
α6, it is possible to obtain phonon spectra with optical frequencies in 150
- 240 cm−1 range, which correlates with the experimental data. However,
the distribution of densities in the spectra of phonon states is signi�cantly
di�erent, which may re�ect the signi�cant lability of the chemical bond in
these compounds, despite the binary nature of their composition.

1 Introduction

Simpli�cation of mathematical description, the ascertainment of certain rules of
selection, reference points and exact relationships in physical theory, including
the theory of condensed matter, are related with the theory of symmetry and its
generalizations [1]. No less productive in recent years has been the idea of lattice
models [2, 3] which also allows for a number of simpli�cations and exact solutions.
Let us show the possibility of obtaining additional simpli�cations in the method
of calculating the model phonon spectra of complex crystals, in the concept of
superspatial symmetry [4]�[9] using the idea of lattice models [2, 3].

Crystallographic description of the complex crystals structure in a certain spa-
tial group is associated with the choice of unit cell type and set of Weisskopf's
positions, the latter determine the crystallographic orbits and thus the number of
atoms in the unit cell and their coordinates [10]. The inclusion of Weisskopf's po-
sitions only with rational values allows us to form an elementary cell of a complex
crystal in the form of a lattice model of a certain order. In complex crystals of
cubic syngony, these models can be selected with su�ciently reasonable accuracy
and with a not very large value of the lattice model order.
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2 2 CALCULATION METHOD

To describe the structure of the unit cell, we use a combination of the idea of
superspatial symmetry and the lattice model. Let's de�ne a lattice model with
the minimum possible order n (for cubic syngony) in the metric of the convenient
protocrystal, which will provide setting the positions of atoms at the selected ac-
curacy. We will describe the minimum lattice model in the concept of superspatial
symmetry [4]�[9].

2 Calculation method

Consideration of complex crystals of cubic syngony in the concept of superspatial
symmetry makes it possible to combine them into families having one order of n
of lattice model (na × na × na) and to describe their physical properties from a
single point of view. The analysis showed that NaTl, BiF3, CaF2, ZnS, Ge, Cu2O,
Nb3Sn (A-15) crystals and some others can be attributed to (4a×4a×4a)-family.

Let's illustrate the calculation method of the crystals model phonon spectra of
this family on the structure A15 example [10]. Representatives of this family are
interesting as the most high-temperature superconductors. The ancestor of this
family is aluminum niobium Nb3Al, a typical superconductor with A15 structure
(cubic structure of β-W type with space group Pm3n � 200). A simple cubic unit
cell (SC) contains 8 atoms in the Weisskopf positions (1 am3. [0,0,0], 1, b m3,
[1/2, 1/2 ,1/2] 2 and 6 g mm2, [-x,1/2,0], [0,x,1/2], [0,-x,1/2], [1/2,0,x], [1/2, 0,-x])
where x=1/4. It is convenient to set all these positions in the lattice model of the
order 64 (4× 4a× 4a).

The use of lattice model allows us to use the interatomic interaction as the �rst
approximation according to [11].

Compositional features of realization of complex crystals and systems of solid
solutions according to the mechanism of �lling the lattice model given by protocrys-
tal basis with mixed atoms and vacancies of translationally equivalent positions are
covered by the concept of superspatial symmetry [4]�[9]. Di�erent combinations
of protocrystal bases of the lattice model [2, 3] and real crystal formation together
with all possible variants of compositional �lling the crystallographic positions
(lattice models) can be taken into account. Using the complete set of modulation
vectors [4]�[9] allows determining the amplitudes of mass modulation functions
and on their basis to generate a generalized dynamic matrix of a real physical
object and a matrix of mass perturbation [6]�[9]. The �rst is given in the form of
a superposition of dynamic protocrystalline matrices de�ned at di�erent points in
the Brillouin zone (BZ), connected by modulation vectors. The second is described
by the amplitudes of mass modulation functions [5]�[9].

The solution of the matrix equation relatively ω2(k) allows to determine the
dispersion dependences of the phonon spectrum, and taking into account di�er-
ent variants of compositional �lling and combinations of values of force constants
tracking their genesis [5]�[9].

In the concept of superspatial symmetry, the dispersion curves of the phonon
spectrum of crystal formation are de�ned as solutions of the matrix equation under
the condition of zero equality of the determinant of the form [5, 7, 9]:
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[Dβγ(k + qi)− ω2δβγδij − ω2ρ(i−j)δβγ ] = 0, (1)

where Dβγ(k + qi) � dynamic matrices of a monoatomic protocrystal determined
at points in the Brillouin zone (BZ), (k+ qi), ρ(qi − qj) = (qs) - the amplitudes of
the mass modulation function given for the modulation vector (qi − qj), k � wave
vector, qi � modulation vectors β, γ � coordinates x, y, z.

Dynamic matrices of protocrystal Dβγ(k + qi) in the �rst approximation are
determined by the equation:

Dβγ(k + qi) =
∑
(l ̸=0)

αn
lβlγ
l2

(1− ei(k+qi)l), (2)

where αn is the force constant of the atom interacting in the 0-position and the
l-th neighboring atom, lβ ,lγ � projections of the vector l on the axis β, γ.

In the equidistant approximation for the model, the force characteristic depends
only on the distance between the atoms and, then, the interaction of di�erent kinds
of atoms that are in equidistant positions is the same. Note that this situation in
this structure is realized only at a distance multiple 4a when there is an interaction
of di�erent single-type atoms (Nb - Nb and Sn - Sn). This allows us to form a
dynamic matrix in quasi-diagonal form. In the non-equidistant approximation,
αl is determined by both the distance between the positions and the di�erence
between the physical characteristics, the objects that occupy them (in this paper,
this situation is not considered).

The values of the amplitudes of the mass characteristics ρ(qi) are obtained by
solving the system of equations

m(rj) =

n∑
i=1

ρ(qi)e
iqirj (3)

relative to the amplitudes of mass modulation functions ρ(qi) = ρi, n is the number
of possible positions of atoms in the lattice model, where m(rj) are the mass
characteristics at these positions, qj � the array of modulation vectors, the number
of which coincides with the number of positions in the lattice model.

Thus, the construction of generalized dynamic matrix of (3n×3n) dimensional-
ity is the basis for calculating the dynamics of the lattice, and its elements depend
on the force constants αl [3]�[5],[8].

Let's consider the most general case of crystals with the (4a× 4a× 4a)- super-
lattice (lattice model of the order 64), in which we will describe positions of atoms
using the (3 + 3)-dimensional direct and inverse basis:
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(4)

For VE and Vd, the bases of simple cubic lattice (SCL), the �rst three-dimensional
components a1, a2, a3 and the last three components a4, a5, a6, respectively, were
chosen.

All 64 possible combinations of modulation vectors can be divided into 10 stars,
namely: 2 single- rayed stars
{q000}(q000 = 0, 0, 0), {q222}(q222 = π/a, π/a, π/a);
two three-rayed {q200}(q200 = π/a, 0, 0, q020 = 0, π/a, 0, q002 = 0, 0, π/a)
and {q220}(q220 = π/a, π/a, 0, q202 = π/a, 0, π/a, q022 = 0, π/a, π/a);
two six-rayed {q100}(q100 = π/2a, 0, 0, q010 = 0, π/2a, 0, etc.) and {q122}(q122 =
π/2a, π/a, π/a, etc.);
one octave-rayed {q111}(q111 = π/2a, π/2a, π/2a, etc.)
and three twelve-rayed {q110}(q110 = π/2a, π/2a, 0, etc.),
{q112}(q112 = π/2a, π/2a, π/, etc.), {q120}(q120 = π/a, π/a, 0, etc.).
Similarly, all 64 positions of the n lattice model can be plotted in orbits.

Consideration of the structure and calculations of dispersion dependences for
the superspatial model were performed by solving a secular equation of type (1)
similarly [12], of the order of 192×192, involving 64 possible positions, 8 of which
are occupied by atoms of structures. Occupied Weisskopf's positions are marked
with asterisks.

Dynamic matrices of protocrystal were calculated at 64 points in the Brillouin
zone. By modifying the values of the force constants in the equidistant approxi-
mation, the phonon spectra were obtained for the highly symmetric directions of
the Brillouin zone of a simple cubic lattice and the phonon states density.

The values of the force constants αl are given in order of increasing the dis-
tances between the orbit positions of 1(0, 0, 0) and l + 1, taking into account all
possible variants of the distances between pairs of positions occupied by atoms.
The power constants were chosen in the equidistant approximation; the interaction
was determined only by distance and did not depend on the type of interacting
pairs of atoms. For example, for the Nb3Sn structure, the power constant α4 that
describes the interaction at a distance of 4a (Nb � Nb) is equal to 10.9 n/m, and
the others accordingly :(powerConstants := Vector[row](34, [0, 0, 0, 10.9, 10.1,
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Nb6Sn2 powerConstants := Vector[row](34, [0, 0, 0, 10.9, 10.1, 10.955, 0, 0, 0, 0])

Nb6Sn2, powerConstants := Vector[row](34, [0, 0, 0, 60.9, 1.0, 1.05, 0, 0, 0, 0])

Nb6Ge2 powerConstants := Vector[row](34, [0, 0, 0, 15.9, 10.0, 10.05, 0, 0, 0, 0])

Nb6Ge2 powerConstants := Vector[row](34, [0, 0, 0, 63.0, 12.50, 5.5, 0, 0, 0, 0])

Figure 1: Model phonon dispersion dependences and phonon states densities of
Nb3Sn and Nb3Ge crystals are calculated for highly symmetric directions of the
Brillouin zone in schemes with di�erent combinations of force constants values.
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10.95, 0, 0, 0, 0] for Nb3Sn)). For all other combinations of compounds Nb3Sn
and Nb3Ge, the force constants are chosen similarly (Fig. 1).

Conclusions

The e�ciency of combining the superspatial symmetry concept and the ideas of
the lattice model for the calculation of model phonon spectra of complex crys-
talline formations is shown. As a result of the analysis of the calculated dispersion
dependences of the phonon spectra and states densities of Nb3Sn and Nb3Ge struc-
tures at di�erent combinations of force constants, it is shown that by choosing the
certain combinations of force constants, mainly α4, α5 (Nb-Sn) and α6 (Nb-Nb),
it is possible to obtain the phonon spectra with the optical frequencies in 150 -
240 cm−1 range (4.5 � 7.2 THz), which coincides with the experimental data [10].
At the same time, the distribution of densities in the spectra of phonon states
is signi�cantly di�erent, which may re�ect the signi�cant lability of the chemical
bond in these compounds.
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