
Математичнi Студiї. Т.54, №1 Matematychni Studii. V.54, No.1

УДК 517.518.85+519.652

M. M. Pahirya

A CONTINUANT AND AN ESTIMATE OF THE REMAINDER OF THE

INTERPOLATING CONTINUED C-FRACTION

M. M. Pahirya. A continuant and an estimate of the remainder of the interpolating continued
C-fraction, Mat. Stud. 54 (2020), 32–45.

The problem of the interpolation of functions of a real variable by interpolating continued
C-fraction is investigated. The relationship between the continued fraction and the continuant
was used. The properties of the continuant are established. The formula for the remainder of
the interpolating continued C-fraction proved. The remainder expressed in terms of derivatives
of the functional continent. An estimate of the remainder was obtained. The main result of
this paper is contained in the following Theorem 5:

Let R ⊂ R be a compact, f ∈ C(n+1)(R) and the interpolating continued C-fraction (C-
ICF) of the form

Dn(x) =
Pn(x)

Qn(x)
= a0 +

n

K
k=1

ak(x− xk−1)

1
, ak ∈ R, k = 0, n,

be constructed by the values the function f at nodes X = {xi : xi ∈ R, xi ̸= xj , i ̸= j, i, j =
0, n}. If the partial numerators of C-ICF satisfy the condition of the Paydon–Wall type, that
is 0 < a∗ diamR ≤ p, then

|f(x)−Dn(x)| ≤
f∗

n∏
k=0

|x− xk|

(n+ 1)!Ωn(t)

(
κn+1(p) +

r∑
k=1

(
n+1
k

)
(a∗)k

n+1−2k∑
i1=1

κi1(p)×

×
n+3−3k∑
i2=i1+2

κi2−i1−1(p) · · ·
n−3∑

ik−1=ik−2+2

κik−1−ik−2−1(p)
n−1∑

ik=ik−1+2

κik−ik−1−1(p)κn−ik(p)
)
,

where f∗ = max
0≤m≤r

max
x∈R

|f (n+1−m)(x)|, κn(p) =
(1+

√
1 + 4p)n−(1−

√
1 + 4p)n

2n
√
1 + 4p

, a∗ = max
26i6n

|ai|,

p = t(1− t), t ∈ (0; 1
2 ], r =

[
n
2

]
.

1. Introduction. The need to interpolate a function of the one real variable arises, as
an auxiliary task, in solving many problems of mathematics, applied mathematics, physics,
mechanics, engineering, economics, etc. The problem of interpolation has independent im-
portance too. The functions can be interpolated by the polynomials ([1, 2, 3]), splines ([4]),
rational functions ([2]), Padé approximants ([5]), etc.

In addition to these methods, the function f defined on the compact R ⊂ R can be
interpolated by different types of continued fractions ([6]). An estimate of the remainder of
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the interpolating continued C-fraction was obtained in [7]. The current article is devoted to
obtaining new properties of the continuant and to prove on their basis an estimate of the
remainder of the interpolating continued C-fraction.

2. interpolating continued C-fraction. Here are necessary definitions, formulas, state-
ments in the theory of fractions ([8]). Let b0, ak ̸= 0, bk, k ∈ N, be numbers, functions,
functionals, matrices, operators, and so on. Infinite continued fraction of the form

D = b0 +
a1

b1 +
a2

b2 + . . .
+

an

bn + . . .

(1)

will be briefly written as follows

D = b0 +
∞

K
k=1

ak
bk

= b0 +
a1

b1+

a2

b2+ · · ·+
ak

bk+ · · ·
= b0 +K(ak/bk).

Similarly, nth approximation of the infinite continued fraction (1) is briefly written as

Dn =
Pn

Qn

= b0 +
n

K
k=1

ak
bk

= b0 +
a1

b1+

a2

b2+ · · ·+
an

bn
= b0 +Kn

k=1(ak/bk). (2)

The quantities Pn, Qn, n ∈ N0 = N∪{0}, are called the canonical numerator and denomina-
tor, and b0, ak, bk, k ∈ N, are called elements of the continued fraction. The values of Pn and
Qn can be determined by the elements of the continued fraction using Wallis formulas

Pn = bnPn−1 + anPn−2, P−1 = 1, P0 = b0.

Qn = bnQn−1 + anQn−2, Q−1 = 0, Q0 = 1, n ∈ N.
(3)

Definition 1. Two continued fractions b0 + K(ak/bk) and d0 + K(ck/dk) are said to be
equivalent if and only if they have the same sequence of approximants, b0 + Kn

k=1(ak/bk)
≡ d0 +Kn

k=1(ck/dk).

Theorem 1 ([8]). Continued fractions b0 + K(ak/bk) and d0 + K(ck/dk) are equivalent if
and only if there exists a sequence of non-zero constants {rk : r0 = 1, rk ̸= 0, k ∈ N} such as

d0 = b0, ck = rk−1rkak, dk = rkbk, k ∈ N. (4)

Consider the problem of interpolation of the functions by a continued fraction. Let the
set of interpolation nodes be selected on the compact R ⊂ R

X = {xi : xi ∈ R, xi ̸= xj, i ̸= j, i, j = 0, n}. (5)

The function f will be interpolated by the continued fraction of the form

Dn(x) =
Pn(x)

Qn(x)
= a0 +

n

K
k=1

ak(x− xk−1)

1
, ak ∈ R, k = 0, n. (6)
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A continued fraction (6) is called an interpolating continued C-fraction (C-ICF) ([6]).
The C-ICF satisfies the interpolation conditions Dn(xk) = yk, xk ∈ X, yk = f(xk),

k = 0, n. Its coefficients ak, k ∈ N0, are determined by the following recurrence relation in
the form of a continued fraction

a0 = y0, a1 =
y1 − y0

x1 − x0
, ak =

1

xk − xk−1

(
− 1 +

ak−1(xk − xk−2)

−1 +

ak−2(xk − xk−3)

−1 +

+

ak−3(xk − xk−4)

−1 + · · ·+
a2(xk − x1)

−1 +

a1(xk − x0)

yk − y0

)
, k = 2, n. (7)

It is easy to see, that C-ICF (6) is a rational function. The degree of the polynomials of
numerator and denominator satisfy the inequalities degPn(x) ≤

[
n+1
2

]
, degQn(x) ≤

[
n
2

]
. It

is well known that C-ICF is equivalent to the Thiele interpolating continued fraction ([9]).

Theorem 2 ([7]). Suppose the function f ∈ C(n+1)(R). Let C-ICF (6) be constructed by
the values of the function f at nodes (5). Then the remainder of the C-ICF satisfies the
inequality∣∣∣∣f(x)− Pn(x)

Qn(x)

∣∣∣∣ ≤ f ∗ ∏n
k=0 |x− xk|

(n+ 1)! |Qn(x)|

(
κn+1(ρ)+

r∑
m=1

(
n+1
m

)
(a∗)m

r−m∑
i=0

ρi

i!

m+i∏
j=1

(n−2(m+i)+j)
)
,

where

r = [n/2], f ∗ = max
06i6r

max
x∈R

∣∣f (n+1−i)(x)
∣∣ , κn(p) = (1 +

√
1 + 4p)n − (1−

√
1 + 4p)n

2n
√
1 + 4p

,

a∗ = max
26i6n

|ai| , ρ = a∗ diam R,

Theorem 3. If partial numerators ai(x), i = 2, n, of the finite functional continued fraction
(FCF) of the form

Dn(x) =
Pn(x)

Qn(x)
= a0(x) +

n

K
i=1

ai(x)

1
(8)

for arbitrary x ∈ R satisfy the condition of the Paydon–Wall type |ai(x)| ≤ t(1− t), where
0 < t ≤ 1

2
, then the canonical denominator Qn(x) of the FCF (8) satisfies the inequality

|Qn(x)| ≥ Ωn(t) =


1−

(
4(1− t)t

)n+1

2n(1− 4(1− t)t)
, if 0 < t < 1

2
,

n+ 1

2n
, if t = 1

2
.

(9)

Proof. We rewrite the FCF (8) in the form of an equivalent continued fraction. In the
formulas (4) we choose ri = 2, i = 1, n. We get that

Dn(x) =
Pn(x)

Qn(x)
=
P̄n(x)

Q̄n(x)
=
a0(x)

2

(
2 +

4a1(x)
a0(x)

2 +

4a2(x)

2 + · · ·+
4an(x)

2

)
.

By the assumption of the theorem |ai(x)| ≤ (1−t)t, i = 2, n, then |Q̄1(x)| = 2 ≥ 4(1−t)t+1.
We use the Wallis formulas (3). We have

|Q̄2(x)| = |2Q̄1(x) + 4a2(x)Q̄0z)|≥|2Q̄1(x)| − 4|a2(x)|≥|Q̄1(x)|(4(1− t)t+ 1)− 4(1− t)t =
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= |Q̄1(x)|+ 4(1− t)t(|Q̄1(x)| − 1) ≥ |Q̄1(x)|+
(
4(1− t)t

)2
.

From this it follows that |Q̄2(x)| − |Q̄1(x)| ≥
(
4(1− t)t

)2
. Next,

|Q̄3(x)| = |2Q̄2(x) + 4a3(x)Q̄1(x)| ≥ 2|Q̄2(x)| − 4|a2(x)||Q̄1(x)| ≥ |Q̄2(x)|
(
4(1− t)t+ 1

)
−

−4(1− t)t|Q̄1(x)| ≥ |Q̄2(x)|+ 4(1− t)t
(
|Q̄2(x)| − |Q̄1(x)|

)
.

Then |Q̄3(x)| − |Q̄2(x)| ≥
(
4(1 − t)t

)3
. In the general case, for arbitrary s = 2, n from the

Wallis formulas, it follows

|Q̄s(x)| = |2Q̄s−1(x) + 4as(x)Q̄s−2(x)| ≥ 2|Q̄s−1(x)| − 4|as(x)||Q̄s−2(x)| ≥
≥ |Q̄s−1(x)|

(
4(1− t)t+ 1

)
− 4(1− t)t|Q̄s−2(x)| ≥

≥ |Q̄s−1(x)|+ 4(1− t)t
(
|Q̄s−1(x)| − |Q̄s−2(x)|

)
.

Using induction we get that |Q̄s−1(x)| − |Q̄s−2(x)| ≥
(
4(1− t)t

)s
. Then

|Q̄n(x)| =
n∑
i=2

(
|Q̄i| − |Q̄i−1|

)
+ |Q̄1| =

n∑
i=1

(
4(1− t)t

)i
=


1−

(
4(1− t)t

)n+1

1− 4(1− t)t
, 0 < t < 1

2
,

n+ 1, t = 1
2
.

Since Q̄n(x) = 2nQn(x) we get the estimate (9).

The next statement follows from Theorems 2 and 3.

Theorem 4. Let f ∈ C(n+1)(R). Let C-ICF (6) be constructed by the values of the function
f at nodes (5) and let the partial numerators of C-ICF satisfy the condition of the Paydon–
Wall type, that is 0 < a∗ diamR ≤ p. Then

|f(x)−Dn(x)| ≤
f∗

n∏
k=0

|x− xk|

(n+ 1)! Ωn(t)

(
κn+1(p) +

r∑
m=1

(
n+1
m

)
(a∗)mm!

r−m∑
k=0

(
m+k
m

) (
n−m−k
m+k

)
pk
)
,

where

f ∗ = max
0≤m≤r

max
x∈R

|f (n+1−m)(x)|, κn(p) =
(1+

√
1 + 4p)n−(1−

√
1 + 4p)n

2n
√
1 + 4p

,

a∗ = max
26i6n

|ai|, p = t(1− t), t ∈ (0; 1
2
], r =

[
n
2

]
.

The main result of this paper is contained in the following theorem.

Theorem 5. Let f ∈ C(n+1)(R). Let C-ICF (6) be constructed by the values the function f
at nodes (5) and let the partial numerators of C-ICF satisfy the condition of the Paydon–Wall
type, that is 0 < a∗ diamR ≤ p. Then

|f(x)−Dn(x)| ≤
f∗

n∏
k=0

|x− xk|

(n+ 1)! Ωn(t)

(
κn+1(p) +

r∑
k=1

(
n+1
k

)
(a∗)k

n+1−2k∑
i1=1

κi1(p)×

×
n+3−3k∑
i2=i1+2

κi2−i1−1(p) · · ·
n−3∑

ik−1=ik−2+2

κik−1−ik−2−1(p)
n−1∑

ik=ik−1+2

κik−ik−1−1(p)κn−ik(p)
)
, (10)

where the quantities r, p, a∗, f ∗, κn(p) are defined in theorem 4.
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3. Some properties of the continuant. Let b0, ai, bi, i ∈ N, be real numbers or functions.
The determinant of the form

H(i)
n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

bi ai+1 0 0 . . . 0 0
−1 bi+1 ai+2 0 . . . 0 0
0 −1 bi+2 ai+3 . . . 0 0
0 0 −1 bi+3 . . . 0 0
...

...
...

... . . . ...
...

0 0 0 0 . . . bn−1 an
0 0 0 0 . . . −1 bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, i = 0, n, n ∈ N,

is called a continuant ([10]). A continuant will be shortly written as

H(i)
n = K

(
bi,

ai+1,

bi+1,

ai+2,

bi+2,

. . . ,

. . . ,

an−1,

bn−1,

an
bn

)
.

Since continuant is a partial case of the Hessenberg determinant, it satisfies the three-term
recurrence relation ([11])

H(i)
m = bmH(i)

m−1 + amH(i)
m−2, m = i+ 1, n, H

(i)
i = bi, H

(i)
i−1 = 1. (11)

Theorem 6. If the element ak of a continuant is equal to zero, where i < k ≤ n, and all
other elements are non-zero then

H(i)
n = H(k)

n · H(i)
k−1. (12)

Proof. We have ak = 0. From the recurrence relation (11) follows

H(i)
k = bkH(i)

k−1 = H(k)
k H(i)

k−1, H
(i)
k+1 = bk+1H(i)

k +ak+1H(i)
k−1 = (bkbk+1+ak+1)H(i)

k−1 = H(k)
k+1H

(i)
k−1.

Therefore, for n = k and n = k + 1 the formula (12) holds. Let us assume that (12) holds
for n = m. Then from (11) we get

H(i)
m+1 = bm+1H(i)

m + am+1H(i)
m−1 = bm+1H(k)

m H(i)
k−1 + am+1H(k)

m−1H
(i)
k−1 = H(k)

m+1H
(i)
k−1.

Thus, the formula (12) holds for arbitrary n.

Theorem 7. If bk+i = 0, bs ̸= 0, when s ̸= k + i, as ̸= 0, s = i, n, i ≤ n, then the following
equality holds

A(i,k)
n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

bi ai+1 0 . . . 0 0 0 0 . . . 0 0
−1 bi+1 ai+2 . . . 0 0 0 0 . . . 0 0
0 −1 bi+2 . . . 0 0 0 0 . . . 0 0
...

...
... . . . ...

...
...

... . . . ...
...

0 0 0 . . . bk+i−2 ak+i−1 0 0 . . . 0 0
0 0 0 . . . 0 0 ak+i 0 . . . 0 0
0 0 0 . . . 0 −1 bk+i ak+i+1 . . . 0 0
0 0 0 . . . 0 0 −1 bk+i+1 . . . 0 0
...

...
... . . . ...

...
...

... . . . ...
...

0 0 0 . . . 0 0 0 0 . . . bn−1 an
0 0 0 . . . 0 0 0 0 . . . −1 bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

= ak+iK(i)
k+i−2K

(k+i+1)
n , where K(n+1)

n = K(i)
0 = 1, k = 1, n− i. (13)
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Proof. Let k = 1. Then

A(i,1)
n =

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 ai+1 0 . . . 0 0
−1 bi+1 ai+2 . . . 0 0
0 −1 bi+2 . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . bn−1 an
0 0 0 . . . −1 bn

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

We get A(i,1)
n = ai+1K(i)

i−1K
(i+2)
n , if we decompose the determinant consecutively by the 1st

row and the 1st column. Let k = 2. We decompose the determinant by the 2nd row and
the 2nd column. We have A(i,2)

n = ai+2K(i)
i K(i+3)

n . In the general case, for k = m we will
decompose the determinant consecutively by mth row and mth column, then

A(i,m)
n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

bi ai+1 0 . . . 0 0 0 0 . . . 0 0
−1 bi+1 ai+2 . . . 0 0 0 0 . . . 0 0
0 −1 bi+2 . . . 0 0 0 0 . . . 0 0
...

...
... . . . ...

...
...

... . . . ...
...

0 0 0 . . . bm+i−2 am+i−1 0 0 . . . 0 0
0 0 0 . . . 0 0 am+i 0 . . . 0 0
0 0 0 . . . 0 −1 bm+i am+i+1 . . . 0 0
0 0 0 . . . 0 0 −1 bm+i+1 . . . 0 0
...

...
... . . . ...

...
...

... . . . ...
...

0 0 0 . . . 0 0 0 0 . . . bn−1 an
0 0 0 . . . 0 0 0 0 . . . −1 bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

= −am+i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

bi ai+1 0 . . . 0 0 0 . . . 0 0
−1 bi+1 ai+2 . . . 0 0 0 . . . 0 0
0 −1 bi+2 . . . 0 0 0 . . . 0 0
...

...
... . . . ...

...
... . . . ...

...
0 0 0 . . . bm+i−2 am+i−1 0 . . . 0 0
0 0 0 . . . 0 −1 am+i+1 . . . 0 0
0 0 0 . . . 0 0 bm+i+1 . . . 0 0
...

...
... . . . ...

...
... . . . ...

...
0 0 0 . . . 0 0 0 . . . bn−1 an
0 0 0 . . . 0 0 0 . . . −1 bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

= −am+iam+i−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

bi ai+1 . . . 0 0 0 . . . 0 0
−1 bi+1 . . . 0 0 0 . . . 0 0
...

... . . . ...
...

... . . . ...
...

0 0 . . . bm+i−3 am+i−2 0 . . . 0 0
0 0 . . . 0 0 am+i+1 . . . 0 0
0 0 . . . 0 0 bm+i+1 . . . 0 0
...

... . . . ...
...

... . . . ...
...

0 0 . . . 0 0 0 . . . bn−1 an
0 0 . . . 0 0 0 . . . −1 bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+
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+am+i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

bi ai+1 . . . 0 0 0 0 . . . 0 0
−1 bi+1 . . . 0 0 0 0 . . . 0 0
...

...
... . . . ...

...
... . . . ...

...
0 0 . . . bm+i−3 am+i−2 0 0 . . . 0 0
0 0 . . . −1 bm+i−2 0 0 . . . 0 0
0 0 . . . 0 0 bm+i+1 am+i+2 . . . 0 0
0 0 . . . 0 0 −1 bm+i+2 . . . 0 0
...

... . . . ...
...

...
... . . . ...

...
0 0 . . . 0 0 0 0 . . . bn−1 an
0 0 . . . 0 0 0 0 . . . −1 bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

We take the first (m− 2) columns in the determinants and use the Laplace theorem ([12]).
We obtain A(i,m)

n = am+iK(i)
m+i−2K

(m+i+1)
n . The formula (13) is proved.

It is known ([10]) that a continuant has the property of invariance with respect to the
inverse order of its elements, i.e.

K
(
bi,

ai+1,

bi+1,

ai+2,

bi+2,

. . . ,

. . . ,

an−1,

bn−1,

an
bn

)
= K

(
bn,

an,

bn−1,

an−1,

bn−2,

. . . ,

. . . ,

ai+3,

bi+2,

ai+2,

bi+1,

ai+1

bi

)
. (14)

4. The representation C-ICF in the form of the ratio of the continuants. We use
the fact that nth approximation (2) of a continued fraction (1) can be represented as a ratio
of the continuants ([11]), i.e.

Dn =
Pn
Qn

=
H(0)
n

H(1)
n

. (15)

We introduce continuants of the form

C(i)
m (x) = K

(
ci,

ai+1(x− xi),

1,

ai+2(x− xi+1),

1,

. . . ,

. . . ,

am(x− xm−1)

1

)
, (16)

where i = 0, 1, c0 = a0, c1 = 1, m = 1, n.
In accordance with (15) we have that C-ICF can be represented as the ratio of two

continuants of the form (16), i.e. Dn(x) = C
(0)
n (x)/C

(1)
n (x). Let us show that Dn(xk) =

= C
(0)
n (xk)/C

(1)
n (xk) = C

(0)
k (xk)/C

(1)
k (xk), k = 0, n. It is easy to see that the element

ak+i+1(x− xk+i), k = 0, n, of the continuants C
(i)
n (xk), i = 0, 1, is equal to zero for x = xk+i.

By Theorem 6 we have

C
(0)
n (xk)

C
(1)
n (xk)

=
C

(0)
k (xk)C

(k+1)
n (xk)

C
(1)
n (xk)C

(k+1)
n (xk)

=
C

(0)
k (xk)

C
(1)
k (xk)

.

We obtain another formula for determining the coefficients ak, k = 0, n, of the C-ICF (6).
The C-ICF satisfies the interpolation condition

yk = Dn(xk) =

K
(
a0,

a1(xk − x0),

1,

a2(xk − x1),

1,

. . . ,

. . . ,

ak(xk − xk−1)

1

)
K
(
1,

a2(xk − x1),

1,

a3(xk − x2),

1,

. . . ,

. . . ,

ak(xk − xk−1)

1

) ,
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or

ykK
(
1,

a2(xk − x1),

1,

a3(xk − x2),

1,

. . . ,

. . . ,

ak(xk − xk−1)

1

)
=

= K
(
a0,

a1(xk − x0),

1,

a2(xk − x1),

1,

. . . ,

. . . ,

ak(xk − xk−1)

1

)
.

When it is considered that continuant has the property of invariance (14), then we have

ykK
(
1,

ak(xk − xk−1),

1,

ak−1(xk − xk−2),

1,

. . . ,

. . . ,

a2(xk − x1)

1

)
=

= K
(
1,

ak(xk − xk−1),

1,

ak−1(xk − xk−2),

1,

. . . ,

. . . ,

a2(xk − x1),

1,

a1(xk − x0)

a0

)
.

We decompose both continuants by the 1st rows. Then get it

yk

[
K
(
1,

ak−1(xk − xk−2),

1,

ak−2(xk − xk−3),

1,

. . . ,

. . . ,

a2(xk − x1)

1

)
+

+ak(xk − xk−1)K
(
1,

ak−2(xk − xk−3),

1,

ak−3(xk − xk−4),

1,

. . . ,

. . . ,

a2(xk − x1)

1

)]
=

= K
(
1,

ak−1(xk − xk−2),

1,

ak−2(xk − xk−3),

1,

. . . ,

. . . ,

a2(xk − x1),

1,

a1(xk − x0)

a0

)
+

+ak(xk − xk−1)K
(
1,

ak−2(xk − xk−3),

1,

ak−3(xk − xk−4),

1,

. . . ,

. . . ,

a2(xk − x1),

1,

a1(xk − x0)

a0

)
,

whence

−ak(xk − xk−1)

[
K
(
1,

ak−2(xk − xk−3),

1,

. . . ,

. . . ,

a2(xk − x1),

1,

a1(xk − x0)

a0

)
−

−ykK
(
1,

ak−2(xk − xk−3),

1,

. . . ,

. . . ,

a2(xk − x1),

1,

0

1

)]
=

= K
(
1,

ak−1(xk − xk−2),

1,

ak−2(xk − xk−3),

1,

. . . ,

. . . ,

a2(xk − x1),

1,

a1(xk − x0)

a0

)
−

−ykK
(
1,

ak−1(xk − xk−2),

1,

ak−2(xk − xk−3),

1,

. . . ,

. . . ,

a2(xk − x1),

1,

0

1

)
.

Finally

ak = −
K
(
1,

ak−1(xk − xk−2),

1,

. . . ,

. . . ,

a2(xk − x1),

1,

a1(xk − x0)

yk − a0

)
(xk − xk−1)K

(
1,

ak−2(xk − xk−3),

1,

. . . ,

. . . ,

a2(xk − x1),

1,

a1(xk − x0)

yk − a0

). (17)

If we take the common multiplier (−1) out from odd rows and even columns of a continuants
of the numerator and the denominator (17) then we have

ak = −
K
(
−1,

ak−1(xk − xk−2),

−1,

. . . ,

. . . ,

a2(xk − x1),

−1,

a1(xk − x0)

yk − a0

)
(xk − xk−1)K

(
−1,

ak−2(xk − xk−3),

−1,

. . . ,

. . . ,

a2(xk − x1),

−1,

a1(xk − x0)

yk − a0

). (18)

The formula (18) is equivalent to the formula (7).
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5. Representation of remainder of C-ICF in the form of continuants. Let us ex-
press the remainder of C-ICF in terms of continuants. Consider the determinants

[
c
(1)
n (x)

](1)
i
,

i = 1, n, that are formed from the continuant C
(1)
n (x) by replacing the elements of the ith

rows by their derivatives. Obviously, the determinant
[
c
(1)
n (x)

](1)
i

has only one non-zero
element ai+1 in the ith row, i = 0, n− 1 and

[
c
(1)
n (x)

](1)
n

≡ 0 because the last row of the
determinant contains only zeros. Let

[
c
(1)
n (x)

](2)
ij
, where i, j = 1, n, determinants whose

elements of all rows, except the elements of ith and jth rows, equals the elements of the
continuant C

(1)
n (x) and the elements of the ith and jth rows consist of the derivatives of

elements of the corresponding rows.
The following identities are valid[

c(1)n (x)
](2)
ii

≡
[
c(1)n (x)

](2)
i,n

≡ 0, i = 1, n− 2,
[
c(1)n (x)

](2)
i,i+1

≡ 0, i = 1, n− 1. (19)

The first identity is obvious since the determinants contain a row with zero elements. The
second identity can be obtained by decomposition the determinants by the Laplace rule in
the sum of the products of the 2nd order minors on their cofactors contained in ith and
(i+ 1)th rows.

Denote by
[
c
(1)
n (x)

](k)
i1i2...ik

determinants that are formed from the continuant C
(1)
n (x) by

replacing the elements of the rows i1, i2, . . . , ik by their derivatives.

Theorem 8. (A) The derivative of the kth order, k = 1, [n/2], of the continuant C(1)
n (x) is

equal to (
C(1)
n (x)

)(k)
= k!

n+1−2k∑
i1=1

n+3−2k∑
i2=i1+2

· · ·
n−1∑

ik=ik−1+2

[
c(1)n (x)

](k)
i1i2...ik

. (20)

(B) If k > [n/2], then
(
C

(1)
n (x)

)(k) ≡ 0.

Proof. (A) We will prove the formula (20) by induction. By the rule of differentiation of
the determinant [13] we have that

(
C

(1)
n (x)

)(1)
=
∑n−1

i=1

[
c
(1)
n (x)

](1)
i
,
[
c
(1)
n (x)

](1)
n

≡ 0. The 2nd
derivative of the continuant C

(1)
n (x) will be equal to

(
C(1)
n (x)

)(2)
=

n∑
i2=1

n−1∑
i1=1

[
c(1)n (x)

](2)
i1i2
.

Based on the formula (19) and the symmetry
[
c
(1)
n (x)

](2)
ij

=
[
c
(1)
n (x)

](2)
ji

, we have

(
C(1)
n (x)

)(2)
= 2 ·

n−3∑
i1=1

n−1∑
i2=i1+2

[
c(1)n (x)

](2)
i1i2
.

Suppose that the formula (20) holds for k = m− 1, where m− 1 < [n/2], i.e.

(
C(1)
n (x)

)(m−1)
= (m− 1)!

n+3−2m∑
i1=1

n+5−2m∑
i2=i1+2

· · ·
n−1∑

im−1=im−2+2

[
c(1)n (x)

](m−1)

i1i2...im−1
.
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We find the derivative of the mth order of the continuant C
(1)
n (x). Then we have((

C(1)
n (x)

)(m−1)
)′

= (m− 1)!
n∑

im=1

n+3−2m∑
i1=1

n+5−2m∑
i2=i1+2

· · ·
n−1∑

im−1=im−2+2

[
c(1)n (x)

](m)

i1i2...im−1im
.

From (19) and the property
[
c
(1)
n (x)

](m)

i1i2...im
=
[
c
(1)
n (x)

](m1)

i2i1...im
= . . . =

[
c
(1)
n (x)

](m)

imim−1...i1

follows (
C(1)
n (x)

)(m)
= m!

n+1−2m∑
i1=1

n+3−2m∑
i2=i1+2

· · ·
n−1∑

im=im−1+2

[
c(1)n (x)

](m)

i1i2...im
.

Therefore, the formula (20) is satisfied for an arbitrary 1 ≤ m ≤ [n/2].

(B) In accordance with (A), the derivative of the l = [n/2] order of the continuant C(1)
n (x)

is determined by the formula (20). Find the derivative of the (l + 1)th order. We have(
C(1)
n (x)

)(l+1)

= l!
n∑
k=1

n+1−2l∑
i1=1

n+3−2l∑
i2=i1+2

· · ·
n−1∑

il=il−1+2

[
c(1)n (x)

](l+1)

i1i2...imk
.

All the determinants on the right will be zero by to the formula (19).

Theorem 9. Let function f ∈ C(n+1)(R) be interpolated on the set (5) by the C-ICF (6).
Then there exists a point ψ ∈ Int R such that

f(x)−Dn(x) =

n∏
i=0

(x− xi)

(n+ 1)!C
(1)
n (x)

(
f (n+1)(x)C(1)

n (x) +
r∑

k=1

(
n+1
k

)
f (n+1−k)(x)×

×
n+1−2k∑
i1=1

n+3−2k∑
i2=i1+2

· · ·
n−1∑

ik=ik−1+2

[
c(1)n (x)

](k)
i1i2...ik

)∣∣∣∣∣
x=ψ

, r = [n/2]. (21)

Proof. We have f(x)−Dn(x) = f(x)−C
(0)
n (x)/C

(1)
n (x). Consider an auxiliary function

F (x) = f(x) ·C(1)
n (x)−C(0)

n (x)− λ(x− x0)(x− x1) . . . (x− xn). (22)

The function F is zero in (n + 1) the interpolation nodes xi ∈ R, i = 0, n. If λ is taken as
follows

λ =
f(x∗) ·C(1)

n (x∗)−C
(0)
n (x∗)

(x∗ − x0)(x∗ − x1) . . . (x∗ − xn)
, where x∗ ∈ R\X ,

then the function F will be zero at (n + 2) points of the set X̃ = X ∪ {x∗} ⊂ R. In
accordance with the generalized Rolley theorem [14] there exist a point ξ ∈ IntR such that
F (n+1)(ξ) = 0, or

dn+1

dxn+1

(
f(x)C(1)

n (x)
)∣∣∣

x=ξ
− dn+1

dxn+1

(
C(0)
n (x)

)∣∣∣
x=ξ

− (n+ 1)!λ = 0.

It follows from Theorem 8 that
(
C

(1)
n (x)

)(n+1) ≡ 0. By the formula of the derivative of the
(n+ 1)th order of the product of two functions, we have

dn+1

dxn+1

(
f(x) ·C(1)

n (x)
)
=

r∑
k=0

(
n+1
k

)
f (n+1−k)(x)

(
C(1)
n (x)

)(k)
.
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From this it follows

λ =
1

(n+ 1)!

r∑
k=0

((
n+1
k

)
f (n+1−k)(x)

n+1−2k∑
i1=1

n+3−2k∑
i2=i1+2

· · ·
n−1∑

ik=ik−1+2

[
c(1)n (x)

](k)
i1i2...ik

)∣∣∣
x=ξ

.

Since x∗ is an arbitrary point of the compact R, dividing (22) by C
(1)
n (x) will have (21).

6. Proof of Theorem 5. The main result of the article is proved in this paragraph.

Proof. The determinants [c
(1)
n (x)]

(k)
i1i2...ik

from the formula (21) will be given through the
continuants C(l)

s (x). The ith row of the determinant [c(1)n (x)]
(1)
i , i = 1, n− 1, contains a single

non-zero element ai+1. Similarly, we get [c(1)n (x)]
(2)
i1i2

=ai1+1ai2+1C
(1)
i1−1(x)C

(i1+2)
i2−1 (x)C

(i2+2)
n (x).

By the induction can be shown formula

[c(1)n (x)]
(s)
i1i2...is

=
s∏

k=1

aik+1 ·C(1)
i1−1(x) ·C(is+2)

n (x) ·
s∏

k=2

C
(ik−1+2)
ik−1 (x), s = 1, r. (23)

After substituting (23) in (21), we obtain

f(x)−Dn(x) =

n∏
i=0

(x− xi)

(n+ 1)!C
(1)
n (x)

(
f (n+1)(x)C(1)

n (x) +
r∑

k=1

(
n+1
k

)
f (n+1−k)(x)×

×
n+1−2k∑
i1=1

ai1+1C
(1)
i1−1(x)

n+3−2k∑
i2=i1+2

ai2+1C
(i1+2)
i2−1 (x) · · ·

n−3∑
ik−1=ik−2+2

aik−1+1C
(ik−2+2)
ik−1−1 (x)×

×
n−1∑

ik=ik−1+2

aik+1C
(ik−1+2)
ik−1 (x)C(ik+2)

n (x)
)∣∣∣

x=ψ
, r = [n/2]. (24)

In [6] the inequality |C(s)
t (x)| ≤ κt−s+2(p) was proved. Since |ai| ≤ a∗, i = 2, n, from (24) we

get

|f(x)−Dn(x)| ≤
f∗

n∏
k=0

|x− xk|

(n+ 1)! |C(1)
n (x)|

(
κn+1(p) +

r∑
k=1

(
n+1
k

)
(a∗)k

n+1−2k∑
i1=1

κi1(p)×

×
n+3−3k∑
i2=i1+2

κi2−i1−1(p) · · ·
n−3∑

ik−1=ik−2+2

κik−1−ik−2−1(p)
n−1∑

ik=ik−1+2

κik−ik−1−1(p)κn−ik(p)
)
. (25)

Coefficients of the C-ICF satisfy the conditions of the Paydon-Wall type. From (25) and
Theorem 2 we obtain (10).

The proven estimate of the remainder of the C-ICF has a complex form. We get an
estimate of the remainder, which will be less accurate but more convenient.

From the definition of the κs(p), it follows

κs(p) =
(1 +

√
1 + 4p)s − (1−

√
1 + 4p)s

2s
√
1 + 4p

≤ (1 +
√
1 + 4p)s

2s−1
√
1 + 4p

, s = 1, n− 1.
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Then
n−1∑
i=s+2

κi−s−1(p)κn−i(p) ≤
(
n−s−2

1

)(1 +√
1 + 4p)n−s−1

2n−s−3(
√
1 + 4p)2

.

In the particular case for s = −1 we have

n−1∑
i=1

κi(p)κn−i(p) ≤
(
n−1
1

) (1 +√
1 + 4p)n

2n−2(
√
1 + 4p)2

.

Similarly, we obtain

n−3∑
i1=s+2

κi1−s−1(p)
n−1∑

i2=i1+2

κi2−i1−1(p)κn−i2(p) ≤
(
n−s−3

2

) (1 +√
1 + 4p)n−s−2

2n−s−5(
√
1 + 4p)3

.

If s = −1 then

n−3∑
i1=1

κi1(p)
n−1∑

i2=i1+2

κi2−i1−1(p)κn−i2(p) ≤
(
n−2
2

) (1 +√
1 + 4p)n−1

2n−4(
√
1 + 4p)3

.

By induction, we prove that inequality holds for m = 1, r

n+1−2m∑
i1=s+2

κi1−s−1(p)
n+3−2m∑
i2=i1+2

κi2−i1−1(p) · · ·
n−3∑

im−1=im−2+2

κim−1−im−2−1(p)×

×
n−1∑

im=im−1+2

κim−im−1−1(p)κn−im(p) ≤
(
n−s−m−1

m

) (1 +
√
1 + 4p)n−s−m

2n−s−2m−1(
√
1 + 4p)m+1

.

If m = 1, 2, then the inequality holds. Suppose that it is true for m = t. Then for m = t+1
we have

n−1−2t∑
i1=s+2

κi1−s−1(p) · · ·
n−3∑

it=it−1+2

κit−it−1−1(p)
n−1∑

it+1=it+2

κit+1−it−1(p)κn−it+1(p) ≤

≤
n−1−2t∑
i1=s+2

(
n−i1−t−1

t

) (1 +
√
1 + 4p)n−i1−t

2n−i1−2t−1(
√
1 + 4p)t+1

(1 +
√
1 + 4p)i1−s−1

2i1−s−2
√
1 + 4p

=

=
(
n−s−t−2

t+1

) (1 +√
1 + 4p)n−s−t−1

2n−s−2t−3(
√
1 + 4p)t+2

.

The inequality holds for m = t+ 1. In the particular case, for s = −1 we have

n+1−2m∑
i1=1

κi1(p)
n+3−2m∑
i2=i1+2

κi2−i1−1(p) · · ·
n−3∑

im−1=im−2+2

κim−1−im−2−1(p)×

×
n−1∑

im=im−1+2

κim−im−1−1(p)κn−im(p) ≤
(
n−m
m

)(1 +√
1 + 4p)n+1−m

2n−2m
√
1 + 4p)m+1

, m = 1, r. (26)
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If we take into account the (26) inequality, then (10) can be written

|f(x)−Dn(x)| ≤
f ∗

n∏
k=0

|x− xk|

(n+ 1)! Ωn(t)

r∑
m=0

(
n+1
m

)(
n+1−m

m

)(a∗)m(1 +√
1 + 4p)n+1−m

2n−2m(
√
1 + 4p)m+1

.

Let the value n be fixed. The sequence of binomial coefficients is unimodal, that is

max
0≤m≤r

(
n+1
m

)
=
(
n+1
r

)
.

We then find the value of m, where 0 ≤ m ≤ [n
2
], for which the relations

(
n−m
m

)
≥
(
n−m+1
m−1

)
,(

n−m
m

)
≥
(
n−m−1
m+1

)
are valid. The first inequality holds when (n − 2m + 2)(n − 2m + 1) ≥

≥ m(n−m+1). Square trinomial 5m2 − (5n+7)m+n2 +3n+2 takes non-negative values
when m ∈ (0, (5n + 7 −

√
5n2 + 10n+ 9)/10) since (5n + 7 +

√
5n2 + 10n+ 9)/10 > [n/2].

Similarly, the second inequality holds if m ∈ ((5n − 3 −
√
5n2 + 10n+ 9)/10), [n

2
]). Hence

5n−3−
√
5n2+10n+9
10

< m < 5n+10−
√
5n2+10n+9
10

. It follows

max
0≤m≤r

(
n−m
m

)
=
(
n−l
l

)
, l = [(5n+ 7−

√
5n2 + 10n+ 9)/10].

Next we have
r∑

m=0

(a∗)m (1 +
√
1 + 4p)n+1−m

2n−2m (
√
1 + 4p)m+1

=
(1 +

√
1 + 4p)n+2−r

2n(
√
1 + 4p)r

(
√
1 + 4p(1 +

√
1 + 4p))r − (4a∗)r√

1 + 4p(1 +
√
1 + 4p)− 4a∗

as the sum of the geometric progression with the first term (1 +
√
1 + 4p)n+1/(2n

√
1 + 4p)

and the denominator q = (4a∗)/((1 +
√
1 + 4p)

√
1 + 4p).

Finally we have an estimate of the remainder of the C-ICF

|f(x)−Dn(x)| ≤
f ∗

n∏
k=0

|x− xk|

(n+ 1)! Ωn(t)|
(
n+1
r

) (
n−l
l

) (1 +√
1 + 4p)n+2−r

2n(
√
1 + 4p)r

×

×(
√
1 + 4p(1 +

√
1 + 4p))r − (4a∗)r√

1 + 4p(1 +
√
1 + 4p)− 4a∗

.

The obtained estimate of the remainder is simpler than the estimate of (10) but it is less
accurate.
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