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PROBLEM OF INTERPOLATION OF FUNCTIONS BY
TWO-DIMENSIONAL CONTINUED FRACTIONS

M. M. Pahirya and T.S. Svyda UDC 517.518:519.652

We investigate the problem of interpolation of functions of two real variables by two-dimensional contin-
ued fractions.

1. Introduction

The problem of interpolation of functions of two real variables by two-dimensional continued fractions was
studied by Kuchmins’ka [1] and Cuyt [2]. Later, this problem was investigated in [3—6], where, in particular,
a somewhat different algorithm for the determination of the coefficients of the interpolational two-dimensional
continued fraction was proposed and the method was generalized to the problem of interpolation of functions
of three real variables by three-dimensional continued fractions. Other types of interpolational two-dimensional
continued fractions were considered in [7-9]. In the present paper, we continue the investigations begun in [9].

2. Interpolational Two-Dimensional Continued Fractions

Consider the two-dimensional continued fraction

o0

D) = ) + K 5. n
i=1 i\&Ly

where

q)(:ry)—bzz(a:y+K b( ~|—Ka” ) i=0,1,...,

Jj=i+1 Je Jj=i+1 Z]

a;j(x,y) #0, and b;;(x,y) are functions of two variables.

Definition 1. The finite functional two-dimensional continued fraction
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where
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O™ (2, y) = b, y) + K JJF K M 1=0,L,....m,
j=it1 ]z(x y) j=i+1 Zj(wvy)

is called the (ny,n,)-convergent of the two-dimensional continued fraction (1).

In what follows, we assume that

t

K=o r>t

S=T s

Denote ngy = (ng,ny).
Using an analog of the inverse recurrence algorithm [4, 5], we represent the two-dimensional continued fraction

. Pn,,(,y)
(2) in the form D, (z,y) = ————, where P,
n y( y) any (fL‘, y) Ny

(w,y) is the numerator and Q,,, (x,y) is the denominator

of convergent (2).

3. Relation for the Difference of Convergents

Using the methods of [10], we can find a relation for the difference of convergents. Denote the remainder [the
tail of the two-dimensional continued fraction (2)] by

ik 2 () 3)

= 8,

Let ngy + 1= (ngy +1,ny +1). Then
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where @), is the denominator of the continued fraction and Qmmy is the denominator of the

i=m-+1

Ami

Ny
continued fraction K
1=m-+1

(Qnot1,m and Qmpn,+1 are defined by analogy).

'me

4. Relation for the Remainder of an Interpolational Two-Dimensional Continued Fraction

Let a function of two variables f(x,y) be continuous together with its partial derivatives up to the (k, + 1)th
order with respect to = and up to the (k, + 1)th order with respect to y on the set G' = [a, Bz] X [ay, By]-
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We choose the decompositions X = {x;: z; € [ag, [, @ # x; for @ # 1, i,l = 0,1,...,k, } and
Y ={y;: yj € [ay, By, yj #y for j #1, j,l =0,1,...,ky}. The Cartesian product of these sets Gy, =
X xY = {(z5,yj): z; € X, y; € Y} forms a grid in the set G. Assume that we have the functional two-
dimensional continued fraction (2), where n, = n,(k;) and n, = ny(ky).

Definition 2. The finite functional two-dimensional continued fraction (2) is called an interpolational two-
dimensional continued fraction if the following relations hold at the grid nodes Gy, :

Dy, (zi,y) = cij, (5

where c;j = f(xi,y;), 1=0,1,..., ks, 7=0,1,... ky.

If the two-dimensional continued fraction (2) is an interpolational one, then the difference

P, (CL' ) y)
Rx T,y :fmay -

is called the remainder of the interpolational two-dimensional continued fraction. Assume that the partial numera-
tors a;;(x,y) and partial denominators b;;(x,y) are polynomials. Using Theorem 1 from [11], one can prove the
following statement:

Theorem 1 [9]. Suppose that f(z,y) € C*etLk+)(G) the two-dimensional continued fraction (2) is
an interpolational one, the numerator P, (x,y) and denominator Qy,, (x,y) of fraction (2) are polynomials,

deg, Pn,,(z,y) < kg, and deg, Py, (v,y) < ky. Then there exist £,0 € (ag, 8:) and n,v € (ay, By) such
that
Pa,, (2,y)
an T,y :f$7y —
»(&8) = f@9) Qn,, (7, Y)
_ 1 w, (z) O hzy)| w(y) 9T A(z,y)
- Qngy (. y) | (kz +1)! OQxbetl | 0 (ky+1)! Oykutl v
o, (1) @, (4) B () ©
(kg + 1! (ky + 1) dzhetloyhutt o=t |7
where
kg k?/
=0 J=0

5. Kuchmins’ka—Cuyt-Type Interpolational Two-Dimensional Continued Fractions

Consider several types of interpolational two-dimensional continued fractions. We begin with an interpola-
tional two-dimensional continued fraction proposed by Kuchmins’ka [1] and Cuyt [2]. Assume that the partial
numerators a;;(z,y) in the interpolational two-dimensional continued fraction (2) are defined by the formula
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T — T;i—1 for ¢ > j,
aij(z,y) = ¥ —yj1 for i<y,
(z —2i-1)(y — yi-1) for i=j,

the denominators b;; are the coefficients, n, = k;, and n, = k,. In this case, we have the Kuchmins’ka—Cuyt
interpolational two-dimensional continued fraction

Dnmy(x,y) _ M _ zy (z,y) f{ T — xknzl (y— yk—l)’
Qny (2,Y) k=1 " (2,9) (7
n = min{ng, ny}
where
O (2,y) = bk + K b:_ K v y: s

i=k+1 i=k+1

Theorem 2 [5]. The interpolational two-dimensional continued fraction (7) is a fractional rational function
of two independent variables. The degrees of the polynomials P, (x,y) and Qn,,(z,y) in x and y satisfy the
inequalities deg Py, (x,y) < r(ng) and degQn,,(x,y) < r(ng) + e(ng), where

k k

(1) —1
2 b)

(ng +1)2 +e(ng + 1)
4

and  e(ng) = ke {z,y}.

r(ng) =

It is easy to see that the number of the coefficients of the interpolational two-dimensional continued fraction (7)
is equal to the number of the interpolation nodes in G, . The coefficients of the interpolational two-dimensional
continued fraction (7) can be determined by the Kuchmins’ka—Cuyt algorithm of inverse divided differences [1, 2]
or directly from condition (5). Consider the matrices

x; —xj for 1> j,
X = (ij)ij=01,..me> Tij = (8)
| for i< j,

and

Yi — Yj for 7> j,
Y = (Yij)ij=01,..ny> Yij = )
1 for <.

For functions of two variables, the partial inverse divided difference of the kth order is defined by the relation

E TikYjk 5L

6‘ ) s L= Gy iy
Yook kol + 0kep ! + okokoy ! v
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Proposition 1 [5, 6].

relation

where 1 =0,1,...,n,, 7=0,1,.
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—1 for s>t
ol =
0 for s <t,
i=0,1,...,ng, 7=0,1,...,ny, k=0,...,N—1,
N =max{ng,ny}, 1,j>k.

The coefficients of the interpolational two-dimensional continued fraction (7) satisfy the

bij = 655, (10)

.., Ny, and s = max{i,j}.

6. Estimate for the Remainder of the Kuchmins’ka—Cuyt Interpolational
Two-Dimensional Continued Fraction

We use the following statement for continued fractions:

Theorem 3 [12]. If all partial numerators ay and partial denominators by of the continued fraction

Py R
QT(;"Z) k=m Ok
satisfy the conditions |ay| < d and |bi| > d+ 1, then
dn—l—l—m -1
for d#1,
Q=¢ -t
n+l—m  for d=1.

Theorem 4. Suppose that the following conditions are satisfied:

(i) forafunction f(x,y) continuous in the domain G, the interpolational two-dimensional continued frac-

(it)

(iii)

tion (7) is defined, the coefficients of which are determined by the values of the function at the grid nodes
G, according to formulas (10);

the coefficients of the interpolational two-dimensional continued fraction (7) satisfy the conditions |b;;| >
de + 1, |bj| > dy+1, @ > j, and |by| > dpdy + 3, i = 1,...,n, where dy = B, — a, and
dy = By — ay;

there exists a point (x+,y«) € G, wx & X, yu ¢ Y, suchthat |bp,1,(2«)| > dp + 1, [bin,+1(ys)| >
dy+1, i =0,1,...,ny, j=0,...,ny, and |bpt1n+1(2«,ys)| > dudy + 3, where the coefficients
brg+1,5(Tx); biny+1(Y«), and byi1ni1(2«,ys) are determined by relations (10) with x,,.1 = z+ and
Yny+1 = Yx-
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Then the following inequality is true:

‘f(x*v y*) - Dnmy(x*7 y*)}

(< dt(dy — 1)° n dy ™t (dy — 1) 1
2neg dp (T (e ) 2o dr (dy ™ — di) (dy ™ — d) "y
de #1, dy #1,
n 1 n dy ™ (d, —1)2 1
2o B + 1= mis 2 m) * 2t Ty ) A
de =1, dy, #1,

IN

n d=t(d, —1)? n 1 1
Z —0 (gnatl ) + Z —0 dm + o
m=0 (dg*"" — diP)(dz""" — d) m=0di?(ny +1—m)(ny +2—m) dj

de #1, dy =1,

Zm:O (nz+1—m)(nx+2—m)+zm=0 (ny+1—=m)(ny+2—m)

+1,

Proof. Let us choose the point (x,,y.). By virtue of the conditions of the theorem, we have z, ¢ X
and y. ¢ Y. Using the values of the function f(z,y) at the grid nodes Gy,,+1 = {Zo,...,Tn,, Tn,+1} X

{0, - - .,yny,yny+1}, where 7,11 = z« and yp,+1 = Y«, We construct one more interpolational two-dimen-
sional continued fraction as follows:

To =)y — )
ey+1 — Tp—1 )Y — Yr—1
Dnzerl (CE, y) = (I)g Y (x,y) + K Ty +1 ) (1D
k=1 P, (z,y)
where
o @) = b+ K THJF K %, k=0,1,...,n+1.
i=k+1 ik i=k+1 ki
Itis easy to see that the coefficients b;;, © =0,1,...,n,, 7 =0,1,...,n,, inthe interpolational two-dimensional

continued fraction (11) are equal to the corresponding coefficients in the interpolational two-dimensional continued
fraction (7) by construction, and the coefficients b, 11; = bn,+1,i(Z+), bing+1 = bin,+1(y«), and b1 1 =
brt1m+1(T«, Y«) are determined by relations (10).

The continued fraction (11) is an interpolational one, i.e., Dy, +1(7«,yx) = f(2«,y«) by construction. We
have
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The difference of the convergents Dy, 1 1(2«, yx)—Dn,, (T«, yx) is determined by relation (4) for a;n, = r—x;_1,
j=m+l,. . ng+l, amj =y—yi—1, j=m+1,...,ny+1, m=0,1,...,n, and ass = (r—2s—1)(Y—Ys—1),
s=1,2,...,n.

Using the method of complete mathematical induction, we prove that

‘szy‘ dedya k:1727-"7n7 }szy+1‘ dedy, k:1,2,,n+1 (13)

The moduli of the denominators Qn, m, Qn,+1,m; @mn,, and Qmn,+1 of the continued fractions are
estimated according to Theorem 3, which completes the proof of the theorem.

7. Interpolational Two-Dimensional Continued C’-Fraction
Consider an interpolational two-dimensional continued fraction in the form of the C’-fraction

n

bii@f — xi—l)(y - yi—l)

Dy, (x,y) = bog + @™ (x,y) + , 1 =min{ng, ny}, 14
nzy( y) 00 0 ( y) 5 1+(b’;7/g;y($’y) {x y} ( )
where
No b g Woob (g —
o (g y) = K 2T — ), K s 1‘% Do iso1,...n.
j=i+1 j=i+1

We define the coefficients of the interpolational two-dimensional continued C’-fraction (14) so that condition
(5) is satisfied at the nodes of the set G'p,,,,. Denote

w_ey | e o (s)
Y Tk ﬁl-(ffl) ﬂi(kfl) ﬂ;g;*l) ﬂ,ﬁif”’
where
BED for j>i, i<k
wi =08 for i, j<k,
\ éi_l) for i >k, j>k,

©) _ Cij + Q?Cio + Q?COJ' + 9?9?600

(C ,
K ;0 Y50

i=0,1,...,n Jj=0,1,...,ny, k=12,...,N—1, N =max{ng,ny}.
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Proposition 2. The coefficients of the interpolational two-dimensional continued fraction (14) can be deter-
mined by the relation

by =B85 i=0,1,...,n, j=01,...,n, k=max{i,j}. (16)

Proof. We prove formula (16) by the method of complete mathematical induction by analogy with [4]. It is

easy to see that this formula holds for the coefficients @g”y (x,y) [9]forany n, and n,. For k=0,...,n, and
m = 0,...,ny, the following equality is true:
na £ bioThji—1 1 bojYmj-1
o™ (wrym) = [ =+ KK =77 = cro + com — 2bo. (17)
j=1 J=1

Assume that the coefficients (I)Z” (z,y), k=1,2,...,n, are determined by (16) for n =¢ — 1. Let n =¢. We
have

. bi1 (z — o) (¥ — vo
Dy, (2, y) = boo + D¢ (x,y) + (t ) ) : (18)

biz‘ r — Tj— — Yi—
1+ 07 (z,y) + K ( tlz (v = yi-1)
P 14+ &, (z,y)

Denote

t

bii (v — 2i—1) (Y — yi—1)
t A2 (A KA
wlr,y) =1+ " (z,y) +

' I:( 1+ @™ (z,y)

. (19)

Then we rewrite (18) in the form

b1 (z — o) (y — yo).

Dt;c xr,y :b00+¢)tzy xr,y +
v(@y) 0" (@9) ()

Since Dy, (xi,yj) = ¢y for i =0,1,...,t; and j =0,1,...,t,, taking (17) into account we get

b11wioyjo
Cij — Cio — Coj — Co0

pij = p(xi,yj) =

The two-dimensional continued fraction (19) has ¢ — 1 levels, and its coefficients are, by assumption, deter-
mined by relation (16). Thus, we have

biy=00 Y, i=1,2 b, §=1,2,. ., k=max{i,j}, (20)

where

~(k—1) ok L
Sk _ Wi 0 0; N 0" . o . 1
Y LikYjk Eli’lz—l) Ni(ll:—l) E;i];_l) E}J;‘g_l) )
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Bi(,’j_l) for j>i, i<k,
oY = BRTY for i> g, j<k,
B for ik, >k,

~(1)  Mijg — M1 — p1j + a1

ﬁij = .

Zi1 Yj1

It is obvious that vi; ) = 52(; ) Ttis easy to verify that Bl(]k) =4

this case, relation (16) is also true.

W, i=2,..ts j=2,...,t, Thus,in

)

Proposition 3. The interpolational two-dimensional continued fractions (7) and (14) are equivalent.

Proof. Let bij, © = 0,...,nz, j=0,...,ny, 7 # j,

interpolational two-dimensional continued fraction (7) and let b}

and byg, k£ = 0,...,n, be the coefficients of the

e =0, ng, J = 0,...,ny, 1 # j, and

vk k=0,...,n, be the coefficients of the interpolational two-dimensional continued fraction (14). It is easy to
see that
boo = boo, bjg = — b*:i b*:# 1=2 n
00 0 b N T b 0T biobiio] o
b; L =2
=—" i=2,...,n
O boiboi—1’ oy
=—, b= L 1=2,3 n
b T bigbimniet) T
b, =——F—, 1=1,...,n, k=i+1,...,n,,
br—1ibki
X 1 . .
=" t=1,....n, k=1i+1,...,n,.
bik—1bik

The algorithms presented in the previous sections enable one to independently determine the coefficients of
the indicated interpolational two-dimensional continued fractions in terms of the values of the function at the grid

nodes.

8. Estimate for the Remainder of the Interpolational Two-Dimensional Continued C’-Fraction

Using the Bodnar method [10] (Theorems 3.14 and 3.15), one can prove the following theorem:
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o0

bA
Theorem 5. If the coefficients of the continued fraction by + — satisfy the conditions |by| < 1 and
1
i=1
1
|bi] <a=t(l—1t), 0<t< 3 1=1,2,..., then the following assertions are true:
(i) the continued fraction is convergent;
(ii) the following estimates for the rate of convergence are true:
n—m o 1
2(n+1)(m+1) U 2
|fo = fm] < 2D
(1 —2t)tm™ (1 — )™ (1 — )™ — ™) Foo<t< 1
(1 — )n+T — ndD)((1 — fym+1 — gm+) L = 9
(iii) foreach n=0,1,..., the convergent f, satisfies the inequality |f, — bo| < t.
S b
Let Q,(:) =1+ K Tl denote the remainder of the continued fraction.
i=k+1
Corollary 1. Under the conditions of Theorem 5, the following estimate is true:
s—k+2 ‘ 1
2(s —k+1) -2
@] = 22)
(1 _ t>87k+2 _ tsfk+2 - 1
(1 _ t)s—k-‘rl — skt 0<t< 5

oo
. —t(1—1) . ) . . .
Proof. The fraction 1 + K % is a majorant of this continued fraction. Let P,,, Q.,, and g,
i=1
denote, respectively, the numerator, denominator, and mth convergent of the majorizing continued fraction. It can
be shown that P, = @y,41 > 0 and

Qm=>0-t"+t1-—t)""14+. .. +t™ m=12,.... (23)

Using the method of mathematical induction, one can easily verify that

o

2 Gs—k- (24)

1
Using (23) and (24) for ¢t = 3 we get

s Qs—_k+1 s—k+2
0|2 g1 = k1 |
Qs—k 2(s—k+1)
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Performing the change of variables ¢t = 1 in (23), we get

(x—1)P (z—1)P! 1

Qp = + +ot==

xP xP xP

Returning to the variable ¢, we obtain

Q= (-t =1 -

Taking relations (24) and (25) into account, we get

o Qs—k+1 B

2t) 1.
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(x — )Pt -1

xP(x — 2)

(25)

(1 o t)s—k+2 _ ts—k+2

o

> Gs—k = Qs r
s—

Thus, estimate (22) is true.

Theorem 6. Suppose that the following conditions are satisfied:

(]_ _ t)skarl — s—k+1°

(i) for a continuous function f(x,y) defined in the domain G, the interpolational two-dimensional contin-
ued C'-fraction (14) is constructed so that its coefficients are determined by the values of the function at

the grid nodes G

Ny

(ii) the coefficients of the interpolational two-dimensional continued C'-fraction (14) satisfy the conditions

t:v(l - t:c) Vr € [a$7ﬂ$]7 i > j7

laij| < Qty(L—t,) Yye€lay,By), i<y,

te +t,

where 0 < t,,t, <

V(z,y) €G, i=j, i=

1=0,...,nz, J=0,...,ny,
1=0,...,n5, J=0,...,n,
0,1,...,n,

1
3 @ij = bij(y —yj—1), aji = bji(r —xj1), and a; = by(r — 2;-1)(y — yi-1);

(iii) there exists a point (x.,y«) € G, x. ¢ X, y. ¢ Y, for which the following inequalities hold:

i@l < ol = t0), § = Oroeiiny, Jain,4a()] < (1 -

ty), @ = 0,1,...,n,, and

lant1ns1(2s, ys)| <t +ty, where the quantities by, 1;(+), bin,+1(Yx), and byy1ny1(T«,yx) are

determined by relations (20) for Ty,+1 = T« and Yn,+1 = Yx.

Then the following estimates is true:

2720 =m) (n,, — m + 1)

n (92 () — 1)

m=0

1
fortx:§andty:—

)

> +1 (26)

Ny —m—+3
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|/ (#2,9+) = Dn,, (2, 95|

+

n tgz—m+1(1 _ tm)nzferl((l _ tx)nzfm+1 _ tngerl) 2—2(ny—m) (ny —m+ 1)
(1 — tg)ra—m3 — ge—m+3 ny —m+3

1 1
27
et 12 1) er
1 1
for t, # 3 and t, = 37
}f(%k,y*) — Dy, (x*ay*)‘
>3 " (L= ) (L ) g 2720, — m 1)
) (1=t )rmrmsd — g ny —m+3
! + ! (28)
X
(ty +1/2)™  (t, +1/2)"
1 1
for t, = 3 and t, # 3’ and
|f(5'3*ay*) - Dnzy(l”*ay*)‘
- Zn: t;l[)j_m"rl(l o tx)nx—m-l—l((l . tx)nx—m—‘rl o t’rl}x—m-l—l)
= (1 = tyyems — g 33
tZy*mJFl(l _ ty)nyfm#l((l _ ty)nyferl _ tZy*mJFl)
(1 — gy )r—m+d — g™
1 1
N (29)

X
(e +1y)™ (Lo +1)"

1 1
for tw;«ég and ty;«ég.

Proof. Since z, ¢ X and y. ¢ Y, we construct the interpolational two-dimensional continued C’-frac-

tion on the basis of the values of the function f(z,y) at the grid nodes Gy, ,+1 = {Zo0,.. ., Tn,s Tnyt1} X
{yo,- - Yny> Yn,+1}, Where z,, 11 = 4 and yp, 11 = y«, as follows:
T¢ bz —wi)( )
"y A — —
D, y) = boo + 061 () + [ HEE AL (30)

DL (e y)
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where
na+1 ny+1
et1ny+1 bji(r —xj_1 bij(y — yj—1
(I)z('n ny )(x’y): K J : J >+ K l]( : J )
j=i+1 j=it+1

The two-dimensional continued C’-fraction (30) is an interpolational one, i.e., by construction, Dy, +1(%«, yx) =
f(zs,ys). Then

f(l'*, y*) - Dna:y(x*7y*) = Dnacy"!‘l(x*?y*) - Dnzy ($*7y*)

The difference of D, +1(2+,y+) and Dy, (2, y«) is determined by relation (4).
Using Theorem 5 and the method of complete mathematical induction, we prove that

a5

>ty +ty, k=12...n,

3D
et >t k=12 n+1.

The moduli of the denominators Qn, m, Qn,+1,m; @mn,, and Qmn,+1 of the continued fractions are
estimated according to Corollary 1. Using estimates (22), (31), and (4), we obtain inequalities (26) —(29).
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