PROBLEM OF INTERPOLATION OF FUNCTIONS BY TWO-DIMENSIONAL CONTINUED FRACTIONS

M. M. Pahirya and T. S. Svyda

UDC 517.518:519.652

Abstract

We investigate the problem of interpolation of functions of two real variables by two-dimensional continued fractions.

1. Introduction

The problem of interpolation of functions of two real variables by two-dimensional continued fractions was studied by Kuchmins'ka [1] and Cuyt [2]. Later, this problem was investigated in [3-6], where, in particular, a somewhat different algorithm for the determination of the coefficients of the interpolational two-dimensional continued fraction was proposed and the method was generalized to the problem of interpolation of functions of three real variables by three-dimensional continued fractions. Other types of interpolational two-dimensional continued fractions were considered in [7-9]. In the present paper, we continue the investigations begun in [9].

2. Interpolational Two-Dimensional Continued Fractions

Consider the two-dimensional continued fraction

$$
\begin{equation*}
D(x, y)=\Phi_{0}(x, y)+\bigvee_{i=1}^{\infty} \frac{a_{i i}(x, y)}{\Phi_{i}(x, y)}, \tag{1}
\end{equation*}
$$

where

$$
\Phi_{i}(x, y)=b_{i i}(x, y)+{\underset{K}{j=i+1}}_{\infty}^{a_{j i}(x, y)} b_{j i}(x, y) \quad{\underset{j}{j=i+1}}_{\infty} \frac{a_{i j}(x, y)}{b_{i j}(x, y)}, \quad i=0,1, \ldots,
$$

$a_{i j}(x, y) \not \equiv 0$, and $b_{i j}(x, y)$ are functions of two variables.
Definition 1. The finite functional two-dimensional continued fraction

$$
\begin{equation*}
D_{\left(n_{x}, n_{y}\right)}(x, y)=\Phi_{0}^{\left(n_{x}, n_{y}\right)}(x, y)+\bigvee_{i=1}^{n} \frac{a_{i i}(x, y)}{\Phi_{i}^{\left(n_{x}, n_{y}\right)}(x, y)}, \quad n=\min \left\{n_{x}, n_{y}\right\}, \tag{2}
\end{equation*}
$$

where
Uzhhorod National University, Uzhhorod.

Translated from Ukrains'kyi Matematychnyi Zhurnal, Vol. 58, No. 6, pp. 842-851, June, 2006. Original article submitted November 25, 2004; revision submitted April 18, 2005.

$$
\Phi_{i}^{\left(n_{x}, n_{y}\right)}(x, y)=b_{i i}(x, y)+\mathrm{K}_{j=i+1}^{n_{x}} \frac{a_{j i}(x, y)}{b_{j i}(x, y)}+\prod_{j=i+1}^{n_{y}} \frac{a_{i j}(x, y)}{b_{i j}(x, y)}, \quad i=0,1, \ldots, n
$$

is called the $\left(n_{x}, n_{y}\right)$-convergent of the two-dimensional continued fraction (1).
In what follows, we assume that

$$
\mathrm{K}_{s=r}^{t} \frac{a_{s}}{b_{s}}=0 \quad \text { if } \quad r>t
$$

Denote $n_{x y}=\left(n_{x}, n_{y}\right)$.
Using an analog of the inverse recurrence algorithm [4, 5], we represent the two-dimensional continued fraction (2) in the form $D_{n_{x y}}(x, y)=\frac{P_{n_{x y}}(x, y)}{Q_{n_{x y}}(x, y)}$, where $P_{n_{x y}}(x, y)$ is the numerator and $Q_{n_{x y}}(x, y)$ is the denominator of convergent (2).

3. Relation for the Difference of Convergents

Using the methods of [10], we can find a relation for the difference of convergents. Denote the remainder [the tail of the two-dimensional continued fraction (2)] by

$$
\begin{gather*}
Q_{k}^{n_{x y}}=\Phi_{k}^{n_{x y}}(x, y)+\prod_{i=k+1}^{n} \frac{a_{i i}(x, y)}{\Phi_{i}^{n_{x y}}(x, y)}, \quad k=0, \ldots, n-1 \tag{3}\\
Q_{n}^{n_{x y}}=\Phi_{n}^{n_{x y}}(x, y)
\end{gather*}
$$

Let $n_{x y}+1=\left(n_{x}+1, n_{y}+1\right)$. Then

$$
\begin{gather*}
D_{n_{x y}+1}-D_{n_{x y}}=\sum_{m=0}^{n}\left(\frac{(-1)^{n_{x}+1} \prod_{j=m+1}^{n_{x}+1} a_{j m}}{Q_{n_{x}, m} Q_{n_{x}+1, m}}+\frac{(-1)^{n_{y}+1} \prod_{j=m+1}^{n_{y}+1} a_{m j}}{Q_{m, n_{y}} Q_{m, n_{y}+1}}\right) \prod_{s=1}^{m} \frac{a_{s s}}{Q_{s}^{n_{x y}} Q_{s}^{n_{x y}+1}} \\
+\frac{(-1)^{n} \prod_{s=1}^{n+1} a_{s s}}{Q_{n+1}^{n_{x y}+1} \prod_{s=1}^{n} Q_{s}^{n_{x y}} Q_{s}^{n_{x y}+1}} \tag{4}
\end{gather*}
$$

where $Q_{n_{x}, m}$ is the denominator of the continued fraction $\prod_{i=m+1}^{n_{x}} \frac{a_{i m}}{b_{i m}}$ and $Q_{m, n_{y}}$ is the denominator of the continued fraction $\varliminf_{i=m+1}^{n_{y}} \frac{a_{m i}}{b_{m i}}\left(Q_{n_{x}+1, m}\right.$ and $Q_{m, n_{y}+1}$ are defined by analogy $)$.

4. Relation for the Remainder of an Interpolational Two-Dimensional Continued Fraction

Let a function of two variables $f(x, y)$ be continuous together with its partial derivatives up to the $\left(k_{x}+1\right)$ th order with respect to x and up to the $\left(k_{y}+1\right)$ th order with respect to y on the set $G=\left[\alpha_{x}, \beta_{x}\right] \times\left[\alpha_{y}, \beta_{y}\right]$.

We choose the decompositions $X=\left\{x_{i}: x_{i} \in\left[\alpha_{x}, \beta_{x}\right], x_{i} \neq x_{l}\right.$ for $\left.i \neq l, i, l=0,1, \ldots, k_{x}\right\}$ and $Y=\left\{y_{j}: y_{j} \in\left[\alpha_{y}, \beta_{y}\right], \quad y_{j} \neq y_{l}\right.$ for $\left.j \neq l, j, l=0,1, \ldots, k_{y}\right\}$. The Cartesian product of these sets $G_{k_{x y}}=$ $X \times Y=\left\{\left(x_{i}, y_{j}\right): x_{i} \in X, y_{j} \in Y\right\}$ forms a grid in the set G. Assume that we have the functional twodimensional continued fraction (2), where $n_{x}=n_{x}\left(k_{x}\right)$ and $n_{y}=n_{y}\left(k_{y}\right)$.

Definition 2. The finite functional two-dimensional continued fraction (2) is called an interpolational twodimensional continued fraction if the following relations hold at the grid nodes $G_{k_{x y}}$:

$$
\begin{equation*}
D_{n_{x y}}\left(x_{i}, y_{j}\right)=c_{i j}, \tag{5}
\end{equation*}
$$

where $c_{i j}=f\left(x_{i}, y_{j}\right), i=0,1, \ldots, k_{x}, j=0,1, \ldots, k_{y}$.
If the two-dimensional continued fraction (2) is an interpolational one, then the difference

$$
R_{n_{x y}}(x, y)=f(x, y)-\frac{P_{n_{x y}}(x, y)}{Q_{n_{x y}}(x, y)}
$$

is called the remainder of the interpolational two-dimensional continued fraction. Assume that the partial numerators $a_{i j}(x, y)$ and partial denominators $b_{i j}(x, y)$ are polynomials. Using Theorem 1 from [11], one can prove the following statement:

Theorem 1 [9]. Suppose that $f(x, y) \in \mathbf{C}^{\left(k_{x}+1, k_{y}+1\right)}(G)$, the two-dimensional continued fraction (2) is an interpolational one, the numerator $P_{n_{x y}}(x, y)$ and denominator $Q_{n_{x y}}(x, y)$ of fraction (2) are polynomials, $\operatorname{deg}_{x} P_{n_{x y}}(x, y) \leq k_{x}$, and $\operatorname{deg}_{y} P_{n_{x y}}(x, y) \leq k_{y}$. Then there exist $\xi, \theta \in\left(\alpha_{x}, \beta_{x}\right)$ and $\eta, \nu \in\left(\alpha_{y}, \beta_{y}\right)$ such that

$$
\begin{align*}
R_{n_{x y}}(x, y)= & f(x, y)-\frac{P_{n_{x y}}(x, y)}{Q_{n_{x y}}(x, y)} \\
= & \frac{1}{Q_{n_{x y}}(x, y)}\left[\left.\frac{\omega_{k_{x}}(x)}{\left(k_{x}+1\right)!} \frac{\partial^{k_{x}+1} h(x, y)}{\partial x^{k_{x}+1}}\right|_{x=\theta}+\left.\frac{\omega_{k_{y}}(y)}{\left(k_{y}+1\right)!} \frac{\partial^{k_{y}+1} h(x, y)}{\partial y^{k_{y}+1}}\right|_{y=\nu}\right. \\
& \left.\quad+\left.\frac{\omega_{k_{x}}(x) \omega_{k_{y}}(y)}{\left(k_{x}+1\right)!\left(k_{y}+1\right)!} \frac{\partial^{k_{x}+k_{y}+2} h(x, y)}{\partial x^{k_{x}+1} \partial y^{k_{y}+1}}\right|_{\substack{x=\xi \\
y=\eta}}\right] \tag{6}
\end{align*}
$$

where

$$
\omega_{k_{x}}(x)=\prod_{i=0}^{k_{x}}\left(x-x_{i}\right), \quad \omega_{k_{y}}(y)=\prod_{j=0}^{k_{y}}\left(y-y_{j}\right), \quad h(x, y)=Q_{n_{x y}}(x, y) f(x, y) .
$$

5. Kuchmins'ka-Cuyt-Type Interpolational Two-Dimensional Continued Fractions

Consider several types of interpolational two-dimensional continued fractions. We begin with an interpolational two-dimensional continued fraction proposed by Kuchmins'ka [1] and Cuyt [2]. Assume that the partial numerators $a_{i j}(x, y)$ in the interpolational two-dimensional continued fraction (2) are defined by the formula

$$
a_{i j}(x, y)= \begin{cases}x-x_{i-1} & \text { for } \quad i>j \\ y-y_{j-1} & \text { for } \quad i<j \\ \left(x-x_{i-1}\right)\left(y-y_{i-1}\right) & \text { for } \quad i=j\end{cases}
$$

the denominators $b_{i j}$ are the coefficients, $n_{x}=k_{x}$, and $n_{y}=k_{y}$. In this case, we have the Kuchmins' ${ }^{\prime}$ a-Cuyt interpolational two-dimensional continued fraction

$$
\begin{align*}
D_{n_{x y}}(x, y)=\frac{P_{n_{x y}}(x, y)}{Q_{n_{x y}}(x, y)} & =\Phi_{0}^{n_{x y}}(x, y)+\mathrm{K}_{k=1}^{n} \frac{\left(x-x_{k-1}\right)\left(y-y_{k-1}\right)}{\Phi_{k}^{n_{x y}}(x, y)}, \\
n & =\min \left\{n_{x}, n_{y}\right\},
\end{align*}
$$

where

$$
\Phi_{k}^{n_{x y}}(x, y)=b_{k k}+K_{i=k+1}^{n_{x}} \frac{x-x_{i-1}}{b_{i k}}+K_{i=k+1}^{n_{y}} \frac{y-y_{i-1}}{b_{k i}} .
$$

Theorem 2 [5]. The interpolational two-dimensional continued fraction (7) is a fractional rational function of two independent variables. The degrees of the polynomials $P_{n_{x y}}(x, y)$ and $Q_{n_{x y}}(x, y)$ in x and y satisfy the inequalities $\underset{k}{\operatorname{deg}} P_{n_{x y}}(x, y) \leq r\left(n_{k}\right)$ and $\operatorname{deg}_{k} Q_{n_{x y}}(x, y) \leq r\left(n_{k}\right)+\varepsilon\left(n_{k}\right)$, where

$$
r\left(n_{k}\right)=\frac{\left(n_{k}+1\right)^{2}+\varepsilon\left(n_{k}+1\right)}{4} \quad \text { and } \quad \varepsilon\left(n_{k}\right)=\frac{(-1)^{n_{k}}-1}{2}, \quad k \in\{x, y\} .
$$

It is easy to see that the number of the coefficients of the interpolational two-dimensional continued fraction (7) is equal to the number of the interpolation nodes in $G_{n_{x y}}$. The coefficients of the interpolational two-dimensional continued fraction (7) can be determined by the Kuchmins'ka-Cuyt algorithm of inverse divided differences [1, 2] or directly from condition (5). Consider the matrices

$$
\mathbf{X}=\left(x_{i j}\right)_{i, j=0,1, \ldots, n_{x}}, \quad x_{i j}= \begin{cases}x_{i}-x_{j} & \text { for } \quad i>j, \tag{8}\\ 1 & \text { for } \quad i \leq j,\end{cases}
$$

and

$$
\mathbf{Y}=\left(y_{i j}\right)_{i, j=0,1, \ldots, n_{y}}, \quad y_{i j}= \begin{cases}y_{i}-y_{j} & \text { for } i>j \tag{9}\\ 1 & \text { for } i \leq j\end{cases}
$$

For functions of two variables, the partial inverse divided difference of the k th order is defined by the relation

$$
\delta_{i j}^{k}=\frac{x_{i k} y_{j k}}{\delta_{i j}^{k-1}+\theta_{j}^{k} \delta_{i k}^{k-1}+\theta_{i}^{k} \delta_{k j}^{k-1}+\theta_{i}^{k} \theta_{j}^{k} \delta_{k k}^{k-1}}, \quad \delta_{i j}^{-1}=c_{i j},
$$

$$
\begin{gathered}
\theta_{s}^{t}=\left\{\begin{array}{lll}
-1 & \text { for } & s>t, \\
0 & \text { for } & s \leq t
\end{array}\right. \\
i=0,1, \ldots, n_{x}, \quad j=0,1, \ldots, n_{y}, \quad k=0, \ldots, N-1, \\
N=\max \left\{n_{x}, n_{y}\right\}, \quad i, j>k .
\end{gathered}
$$

Proposition 1 [5, 6]. The coefficients of the interpolational two-dimensional continued fraction (7) satisfy the relation

$$
\begin{equation*}
b_{i j}=\delta_{i j}^{s-1} \tag{10}
\end{equation*}
$$

where $i=0,1, \ldots, n_{x}, j=0,1, \ldots, n_{y}$, and $s=\max \{i, j\}$.

6. Estimate for the Remainder of the Kuchmins'ka-Cuyt Interpolational Two-Dimensional Continued Fraction

We use the following statement for continued fractions:
Theorem 3 [12]. If all partial numerators a_{k} and partial denominators b_{k} of the continued fraction

$$
\frac{P_{m}^{(n)}}{Q_{m}^{(n)}}=K_{k=m}^{n} \frac{a_{k}}{b_{k}}
$$

satisfy the conditions $\left|a_{k}\right| \leq d$ and $\left|b_{k}\right| \geq d+1$, then

$$
\left|Q_{m}^{(n)}\right| \geq\left\{\begin{array}{ll}
\frac{d^{n+1-m}-1}{d-1} & \text { for } \\
d \neq 1 \\
n+1-m & \text { for }
\end{array} \quad d=1\right.
$$

Theorem 4. Suppose that the following conditions are satisfied:
(i) for a function $f(x, y)$ continuous in the domain G, the interpolational two-dimensional continued fraction (7) is defined, the coefficients of which are determined by the values of the function at the grid nodes $G_{n_{x y}}$ according to formulas (10);
(ii) the coefficients of the interpolational two-dimensional continued fraction (7) satisfy the conditions $\left|b_{i j}\right| \geq$ $d_{x}+1,\left|b_{j i}\right| \geq d_{y}+1, i>j$, and $\left|b_{i i}\right| \geq d_{x} d_{y}+3, i=1, \ldots, n$, where $d_{x}=\beta_{x}-\alpha_{x}$ and $d_{y}=\beta_{y}-\alpha_{y} ;$
(iii) there exists a point $\left(x_{*}, y_{*}\right) \in G, x_{*} \notin X, y_{*} \notin Y$, such that $\left|b_{n_{x}+1, j}\left(x_{*}\right)\right| \geq d_{x}+1,\left|b_{i, n_{y}+1}\left(y_{*}\right)\right| \geq$ $d_{y}+1, i=0,1, \ldots, n_{x}, \quad j=0, \ldots, n_{y}$, and $\left|b_{n+1, n+1}\left(x_{*}, y_{*}\right)\right| \geq d_{x} d_{y}+3$, where the coefficients $b_{n_{x}+1, j}\left(x_{*}\right), b_{i, n_{y}+1}\left(y_{*}\right)$, and $b_{n+1, n+1}\left(x_{*}, y_{*}\right)$ are determined by relations (10) with $x_{n_{x}+1}=x_{*}$ and $y_{n_{y}+1}=y_{*}$.

Then the following inequality is true:

$$
\left|f\left(x_{*}, y_{*}\right)-D_{n_{x y}}\left(x_{*}, y_{*}\right)\right|
$$

Proof. Let us choose the point $\left(x_{*}, y_{*}\right)$. By virtue of the conditions of the theorem, we have $x_{*} \notin X$ and $y_{*} \notin Y$. Using the values of the function $f(x, y)$ at the grid nodes $G_{n_{x y}+1}=\left\{x_{0}, \ldots, x_{n_{x}}, x_{n_{x}+1}\right\} \times$ $\left\{y_{0}, \ldots, y_{n_{y}}, y_{n_{y}+1}\right\}$, where $x_{n_{x}+1}=x_{*}$ and $y_{n_{y}+1}=y_{*}$, we construct one more interpolational two-dimensional continued fraction as follows:

$$
\begin{equation*}
D_{n_{x y}+1}(x, y)=\Phi_{0}^{n_{x y}+1}(x, y)+\varliminf_{k=1}^{n+1} \frac{\left(x-x_{k-1}\right)\left(y-y_{k-1}\right)}{\Phi_{k}^{n_{x y}+1}(x, y)}, \tag{11}
\end{equation*}
$$

where

$$
\Phi_{k}^{n_{x y}+1}(x, y)=b_{k k}+\varliminf_{i=k+1}^{n_{x}+1} \frac{x-x_{i-1}}{b_{i k}}+\varliminf_{i=k+1}^{n_{y}+1} \frac{y-y_{i-1}}{b_{k i}}, \quad k=0,1, \ldots, n+1
$$

It is easy to see that the coefficients $b_{i j}, i=0,1, \ldots, n_{x}, j=0,1, \ldots, n_{y}$, in the interpolational two-dimensional continued fraction (11) are equal to the corresponding coefficients in the interpolational two-dimensional continued fraction (7) by construction, and the coefficients $b_{n_{x}+1, i}=b_{n_{x}+1, i}\left(x_{*}\right), b_{i, n_{y}+1}=b_{i, n_{y}+1}\left(y_{*}\right)$, and $b_{n+1, n+1}=$ $b_{n+1, n+1}\left(x_{*}, y_{*}\right)$ are determined by relations (10).

The continued fraction (11) is an interpolational one, i.e., $D_{n_{x y}+1}\left(x_{*}, y_{*}\right)=f\left(x_{*}, y_{*}\right)$ by construction. We have

$$
\begin{equation*}
f\left(x_{*}, y_{*}\right)-D_{n_{x y}}\left(x_{*}, y_{*}\right)=D_{n_{x y}+1}\left(x_{*}, y_{*}\right)-D_{n_{x y}}\left(x_{*}, y_{*}\right) . \tag{12}
\end{equation*}
$$

The difference of the convergents $D_{n_{x y}+1}\left(x_{*}, y_{*}\right)-D_{n_{x y}}\left(x_{*}, y_{*}\right)$ is determined by relation (4) for $a_{j m}=x-x_{j-1}$, $j=m+1, \ldots, n_{x}+1, a_{m j}=y-y_{j-1}, j=m+1, \ldots, n_{y}+1, m=0,1, \ldots, n$, and $a_{s s}=\left(x-x_{s-1}\right)\left(y-y_{s-1}\right)$, $s=1,2, \ldots, n$.

Using the method of complete mathematical induction, we prove that

$$
\begin{equation*}
\left|Q_{k}^{n_{x y}}\right| \geq d_{x} d_{y}, \quad k=1,2, \ldots, n, \quad\left|Q_{k}^{n_{x y}+1}\right| \geq d_{x} d_{y}, \quad k=1,2, \ldots, n+1 . \tag{13}
\end{equation*}
$$

The moduli of the denominators $Q_{n_{x}, m}, Q_{n_{x}+1, m}, Q_{m, n_{y}}$, and $Q_{m, n_{y}+1}$ of the continued fractions are estimated according to Theorem 3 , which completes the proof of the theorem.

7. Interpolational Two-Dimensional Continued \mathbf{C}^{\prime}-Fraction

Consider an interpolational two-dimensional continued fraction in the form of the C^{\prime}-fraction

$$
\begin{equation*}
D_{n_{x y}}(x, y)=b_{00}+\Phi_{0}^{n_{x y}}(x, y)+K_{i=1}^{n} \frac{b_{i i}\left(x-x_{i-1}\right)\left(y-y_{i-1}\right)}{1+\Phi_{i}^{n_{x y}}(x, y)}, \quad n=\min \left\{n_{x}, n_{y}\right\} \tag{14}
\end{equation*}
$$

where

$$
\Phi_{i}^{n_{x y}}(x, y)=K_{j=i+1}^{n_{x}} \frac{b_{j i}\left(x-x_{j-1}\right)}{1}+K_{j=i+1}^{n_{y}} \frac{b_{i j}\left(y-y_{j-1}\right)}{1}, \quad i=0,1, \ldots, n .
$$

We define the coefficients of the interpolational two-dimensional continued C^{\prime}-fraction (14) so that condition (5) is satisfied at the nodes of the set $G_{n_{x y}}$. Denote

$$
\begin{equation*}
\beta_{i j}^{(k)}=\frac{\omega_{i j}^{(k-1)}}{x_{i k} y_{j k}}\left[\frac{1}{\beta_{i j}^{(k-1)}}+\frac{\theta_{j}^{k}}{\beta_{i k}^{(k-1)}}+\frac{\theta_{i}^{k}}{\beta_{k j}^{(k-1)}}+\frac{\theta_{j}^{k} \theta_{i}^{k}}{\beta_{k k}^{(k-1)}}\right], \tag{15}
\end{equation*}
$$

where

$$
\begin{gathered}
\omega_{i j}^{(k-1)}= \begin{cases}\beta_{i k}^{(k-1)} & \text { for } \quad j>i, \quad i<k, \\
\beta_{k j}^{(k-1)} & \text { for } i>j, \quad j<k, \\
\beta_{k k}^{(k-1)} & \text { for } i \geq k, \quad j \geq k,\end{cases} \\
\beta_{i j}^{(0)}=\frac{c_{i j}+\theta_{j}^{0} c_{i 0}+\theta_{i}^{0} c_{0 j}+\theta_{j}^{0} \theta_{i}^{0} c_{00}}{x_{i 0} y_{j 0}}, \\
i=0,1, \ldots, n_{x}, \quad j=0,1, \ldots, n_{y}, \quad k=1,2, \ldots, N-1, \quad N=\max \left\{n_{x}, n_{y}\right\} .
\end{gathered}
$$

Proposition 2. The coefficients of the interpolational two-dimensional continued fraction (14) can be determined by the relation

$$
\begin{equation*}
b_{i j}=\beta_{i j}^{(k-1)}, \quad i=0,1, \ldots, n_{x}, \quad j=0,1, \ldots, n_{y}, \quad k=\max \{i, j\} . \tag{16}
\end{equation*}
$$

Proof. We prove formula (16) by the method of complete mathematical induction by analogy with [4]. It is easy to see that this formula holds for the coefficients $\Phi_{0}^{n_{x y}}(x, y)$ [9] for any n_{x} and n_{y}. For $k=0, \ldots, n_{x}$ and $m=0, \ldots, n_{y}$, the following equality is true:

$$
\begin{equation*}
\Phi_{0}^{n_{x y}}\left(x_{k}, y_{m}\right)=K_{j=1}^{n_{x}} \frac{b_{j 0} x_{k j-1}}{1}+K_{j=1}^{n_{y}} \frac{b_{0 j} y_{m j-1}}{1}=c_{k 0}+c_{0 m}-2 b_{00} \tag{17}
\end{equation*}
$$

Assume that the coefficients $\Phi_{k}^{n_{x y}}(x, y), k=1,2, \ldots, n$, are determined by (16) for $n=t-1$. Let $n=t$. We have

$$
\begin{equation*}
D_{t_{x y}}(x, y)=b_{00}+\Phi_{0}^{t_{x y}}(x, y)+\frac{b_{11}\left(x-x_{0}\right)\left(y-y_{0}\right)}{1+\Phi_{1}^{t_{x y}}(x, y)+\varliminf_{i=2}^{t} \frac{b_{i i}\left(x-x_{i-1}\right)\left(y-y_{i-1}\right)}{1+\Phi_{i}^{t_{x y}}(x, y)}} . \tag{18}
\end{equation*}
$$

Denote

$$
\begin{equation*}
\mu(x, y)=1+\Phi_{1}^{t_{x y}}(x, y)+\mathrm{K}_{i=2}^{t} \frac{b_{i i}\left(x-x_{i-1}\right)\left(y-y_{i-1}\right)}{1+\Phi_{i}^{t_{x y}}(x, y)} . \tag{19}
\end{equation*}
$$

Then we rewrite (18) in the form

$$
D_{t_{x y}}(x, y)=b_{00}+\Phi_{0}^{t_{x y}}(x, y)+\frac{b_{11}\left(x-x_{0}\right)\left(y-y_{0}\right)}{\mu(x, y)}
$$

Since $D_{t_{x y}}\left(x_{i}, y_{j}\right)=c_{i j}$ for $i=0,1, \ldots, t_{x}$ and $j=0,1, \ldots, t_{y}$, taking (17) into account we get

$$
\mu_{i j}=\mu\left(x_{i}, y_{j}\right)=\frac{b_{11} x_{i 0} y_{j 0}}{c_{i j}-c_{i 0}-c_{0 j}-c_{00}} .
$$

The two-dimensional continued fraction (19) has $t-1$ levels, and its coefficients are, by assumption, determined by relation (16). Thus, we have

$$
\begin{equation*}
b_{i j}=\widetilde{\beta}_{i j}^{(k-1)}, \quad i=1,2, \ldots, t_{x}, \quad j=1,2, \ldots, t_{y}, \quad k=\max \{i, j\}, \tag{20}
\end{equation*}
$$

where

$$
\widetilde{\beta}_{i j}^{(k)}=\frac{\widetilde{\widetilde{\omega}}_{i j}^{(k-1)}}{x_{i k} y_{j k}}\left[\frac{\theta_{j}^{k} \theta_{i}^{k}}{\widetilde{\beta}_{k k}^{(k-1)}}+\frac{\theta_{j}^{k}}{\widetilde{\beta}_{i k}^{(k-1)}}+\frac{\theta_{i}^{k}}{\widetilde{\beta}_{k j}^{(k-1)}}+\frac{1}{\widetilde{\beta}_{i j}^{(k-1)}}\right],
$$

$$
\begin{gathered}
\widetilde{\omega}_{i j}^{(k-1)}= \begin{cases}\widetilde{\beta}_{i k}^{(k-1)} & \text { for } \quad j>i, \quad i<k \\
\widetilde{\beta}_{j k}^{(k-1)} & \text { for } \quad i>j, \quad j<k \\
\widetilde{\beta}_{k k}^{(k-1)} & \text { for } \quad i \geq k, \quad j \geq k\end{cases} \\
\widetilde{\beta}_{i j}^{(1)}=\frac{\mu_{i j}-\mu_{i 1}-\mu_{1 j}+\mu_{11}}{x_{i 1} y_{j 1}}
\end{gathered}
$$

It is obvious that $\widetilde{\beta}_{i j}^{(1)}=\beta_{i j}^{(1)}$. It is easy to verify that $\widetilde{\beta}_{i j}^{(k)}=\beta_{i j}^{(k)}, i=2, \ldots, t_{x}, j=2, \ldots, t_{y}$. Thus, in this case, relation (16) is also true.

Proposition 3. The interpolational two-dimensional continued fractions (7) and (14) are equivalent.
Proof. Let $b_{i j}, i=0, \ldots, n_{x}, j=0, \ldots, n_{y}, i \neq j$, and $b_{k k}, k=0, \ldots, n$, be the coefficients of the interpolational two-dimensional continued fraction (7) and let $b_{i j}^{*}, i=0, \ldots, n_{x}, j=0, \ldots, n_{y}, i \neq j$, and $b_{k k}^{*}, k=0, \ldots, n$, be the coefficients of the interpolational two-dimensional continued fraction (14). It is easy to see that

$$
\begin{gathered}
b_{00}^{*}=b_{00}, \quad b_{10}^{*}=\frac{1}{b_{10}}, \quad b_{01}^{*}=\frac{1}{b_{01}}, \quad b_{i 0}^{*}=\frac{1}{b_{i 0} b_{i-10}}, \quad i=2, \ldots, n_{x} \\
b_{0 i}^{*}=\frac{1}{b_{0 i} b_{0 i-1}}, \quad i=2, \ldots, n_{y} \\
b_{11}^{*}=\frac{1}{b_{11}}, \quad b_{i i}^{*}=\frac{1}{b_{i i} b_{i-1 i-1}}, \quad i=2,3, \ldots, n \\
b_{k i}^{*}=\frac{1}{b_{k-1 i} b_{k i}}, \quad i=1, \ldots, n, \quad k=i+1, \ldots, n_{x} \\
b_{i k}^{*}=\frac{1}{b_{i k-1} b_{i k}}, \quad i=1, \ldots, n, \quad k=i+1, \ldots, n_{y}
\end{gathered}
$$

The algorithms presented in the previous sections enable one to independently determine the coefficients of the indicated interpolational two-dimensional continued fractions in terms of the values of the function at the grid nodes.

8. Estimate for the Remainder of the Interpolational Two-Dimensional Continued \mathbf{C}^{\prime}-Fraction

Using the Bodnar method [10] (Theorems 3.14 and 3.15), one can prove the following theorem:

Theorem 5. If the coefficients of the continued fraction $b_{0}+{\underset{i}{K}}_{\infty}^{\infty} \frac{b_{i}}{1}$ satisfy the conditions $\left|b_{0}\right| \leq 1$ and $\left|b_{i}\right| \leq \alpha=t(1-t), \quad 0 \leq t \leq \frac{1}{2}, \quad i=1,2, \ldots$, then the following assertions are true:
(i) the continued fraction is convergent;
(ii) the following estimates for the rate of convergence are true:

$$
\left|f_{n}-f_{m}\right| \leq \begin{cases}\frac{n-m}{2(n+1)(m+1)} & \text { if } t=\frac{1}{2} \tag{21}\\ \frac{(1-2 t) t^{m+1}(1-t)^{m+1}\left((1-t)^{n-m}-t^{n-m}\right)}{\left((1-t)^{n+1}-t^{n+1}\right)\left((1-t)^{m+1}-t^{m+1}\right)} & \text { if } 0 \leq t<\frac{1}{2}\end{cases}
$$

(iii) for each $n=0,1, \ldots$, the convergent f_{n} satisfies the inequality $\left|f_{n}-b_{0}\right| \leq t$.

Corollary 1. Under the conditions of Theorem 5, the following estimate is true:

$$
\left|Q_{k}^{(s)}\right| \geq \begin{cases}\frac{s-k+2}{2(s-k+1)}, & t=\frac{1}{2} \tag{22}\\ \frac{(1-t)^{s-k+2}-t^{s-k+2}}{(1-t)^{s-k+1}-t^{s-k+1}}, & 0 \leq t<\frac{1}{2}\end{cases}
$$

Proof. The fraction $1+K_{i=1}^{\infty} \frac{-t(1-t)}{1}$ is a majorant of this continued fraction. Let P_{m}, Q_{m}, and g_{m} denote, respectively, the numerator, denominator, and m th convergent of the majorizing continued fraction. It can be shown that $P_{m}=Q_{m+1}>0$ and

$$
\begin{equation*}
Q_{m}=(1-t)^{m}+t(1-t)^{m-1}+\ldots+t^{m}, \quad m=1,2, \ldots \tag{23}
\end{equation*}
$$

Using the method of mathematical induction, one can easily verify that

$$
\begin{equation*}
\left|Q_{k}^{(s)}\right| \geq g_{s-k} \tag{24}
\end{equation*}
$$

Using (23) and (24) for $t=\frac{1}{2}$, we get

$$
\left|Q_{k}^{(s)}\right| \geq g_{s-k}=\frac{Q_{s-k+1}}{Q_{s-k}}=\frac{s-k+2}{2(s-k+1)} .
$$

Performing the change of variables $t=x^{-1}$ in (23), we get

$$
Q_{p}=\frac{(x-1)^{p}}{x^{p}}+\frac{(x-1)^{p-1}}{x^{p}}+\ldots+\frac{1}{x^{p}}=\frac{(x-1)^{p+1}-1}{x^{p}(x-2)} .
$$

Returning to the variable t, we obtain

$$
\begin{equation*}
Q_{p}=\left((1-t)^{p+1}-t^{p+1}\right)(1-2 t)^{-1} \tag{25}
\end{equation*}
$$

Taking relations (24) and (25) into account, we get

$$
\left|Q_{k}^{(s)}\right| \geq g_{s-k}=\frac{Q_{s-k+1}}{Q_{s-k}}=\frac{(1-t)^{s-k+2}-t^{s-k+2}}{(1-t)^{s-k+1}-t^{s-k+1}}
$$

Thus, estimate (22) is true.
Theorem 6. Suppose that the following conditions are satisfied:
(i) for a continuous function $f(x, y)$ defined in the domain G, the interpolational two-dimensional continued C^{\prime}-fraction (14) is constructed so that its coefficients are determined by the values of the function at the grid nodes $G_{n_{x y}}$;
(ii) the coefficients of the interpolational two-dimensional continued C^{\prime}-fraction (14) satisfy the conditions

$$
\left|a_{i j}\right| \leq\left\{\begin{array}{lll}
t_{x}\left(1-t_{x}\right) & \forall x \in\left[\alpha_{x}, \beta_{x}\right], & i>j, \quad i=0, \ldots, n_{x}, \quad j=0, \ldots, n_{y}, \\
t_{y}\left(1-t_{y}\right) & \forall y \in\left[\alpha_{y}, \beta_{y}\right], \quad i<j, \quad i=0, \ldots, n_{x}, \quad j=0, \ldots, n_{y}, \\
t_{x}+t_{y} & \forall(x, y) \in G, \quad i=j, \quad i=0,1, \ldots, n,
\end{array}\right.
$$

where $0 \leq t_{x}, t_{y} \leq \frac{1}{2}, a_{i j}=b_{i j}\left(y-y_{j-1}\right), a_{j i}=b_{j i}\left(x-x_{j-1}\right)$, and $a_{i i}=b_{i i}\left(x-x_{i-1}\right)\left(y-y_{i-1}\right) ;$
(iii) there exists a point $\left(x_{*}, y_{*}\right) \in G, x_{*} \notin X, y_{*} \notin Y$, for which the following inequalities hold: $\left|a_{n_{x}+1 j}\left(x_{*}\right)\right| \leq t_{x}\left(1-t_{x}\right), \quad j=0, \ldots, n_{y},\left|a_{i n_{y}+1}\left(y_{*}\right)\right| \leq t_{y}\left(1-t_{y}\right), i=0,1, \ldots, n_{x}$, and $\left|a_{n+1 n+1}\left(x_{*}, y_{*}\right)\right| \leq t_{x}+t_{y}$, where the quantities $b_{n_{x}+1 j}\left(x_{*}\right), b_{i n_{y}+1}\left(y_{*}\right)$, and $b_{n+1 n+1}\left(x_{*}, y_{*}\right)$ are determined by relations (20) for $x_{n_{x}+1}=x_{*}$ and $y_{n_{y}+1}=y_{*}$.

Then the following estimates is true:

$$
\begin{equation*}
\left|f\left(x_{*}, y_{*}\right)-D_{n_{x y}}\left(x_{*}, y_{*}\right)\right| \leq \sum_{m=0}^{n}\left(\frac{2^{-2\left(n_{x}-m\right)}\left(n_{x}-m+1\right)}{n_{x}-m+3}+\frac{2^{-2\left(n_{y}-m\right)}\left(n_{y}-m+1\right)}{n_{y}-m+3}\right)+1 \tag{26}
\end{equation*}
$$

for $t_{x}=\frac{1}{2}$ and $t_{y}=\frac{1}{2}$,

$$
\begin{align*}
& \left|f\left(x_{*}, y_{*}\right)-D_{n_{x y}}\left(x_{*}, y_{*}\right)\right| \\
& \leq \leq \sum_{m=0}^{n}\left(\frac{t_{x}^{n_{x}-m+1}\left(1-t_{x}\right)^{n_{x}-m+1}\left(\left(1-t_{x}\right)^{n_{x}-m+1}-t_{x}^{n_{x}-m+1}\right)}{\left(1-t_{x}\right)^{n_{x}-m+3}-t_{x}^{n_{x}-m+3}}+\frac{2^{-2\left(n_{y}-m\right)}\left(n_{y}-m+1\right)}{n_{y}-m+3}\right) \\
& \quad \times \frac{1}{\left(t_{x}+1 / 2\right)^{m}}+\frac{1}{\left(t_{x}+1 / 2\right)^{n}} \tag{27}
\end{align*}
$$

for $t_{x} \neq \frac{1}{2}$ and $t_{y}=\frac{1}{2}$,

$$
\begin{align*}
& \left|f\left(x_{*}, y_{*}\right)-D_{n_{x y}}\left(x_{*}, y_{*}\right)\right| \\
& \quad \leq \sum_{m=0}^{n}\left(\frac{t_{y}^{n_{y}-m+1}\left(1-t_{y}\right)^{n_{y}-m+1}\left(\left(1-t_{y}\right)^{n_{y}-m+1}-t_{y}^{n_{y}-m+1}\right)}{\left(1-t_{y}\right)^{n_{y}-m+3}-t_{y}^{n_{y}-m+3}}+\frac{2^{-2\left(n_{x}-m\right)}\left(n_{x}-m+1\right)}{n_{x}-m+3}\right) \\
& \quad \times \frac{1}{\left(t_{y}+1 / 2\right)^{m}}+\frac{1}{\left(t_{y}+1 / 2\right)^{n}} \tag{28}
\end{align*}
$$

for $t_{x}=\frac{1}{2}$ and $t_{y} \neq \frac{1}{2}$, and

$$
\begin{align*}
& \left|f\left(x_{*}, y_{*}\right)-D_{n_{x y}}\left(x_{*}, y_{*}\right)\right| \\
& \quad \leq \sum_{m=0}^{n}\left(\frac{t_{x}^{n_{x}-m+1}\left(1-t_{x}\right)^{n_{x}-m+1}\left(\left(1-t_{x}\right)^{n_{x}-m+1}-t_{x}^{n_{x}-m+1}\right)}{\left(1-t_{x}\right)^{n_{x}-m+3}-t_{x}^{n_{x}-m+3}}\right) \\
& \left.\quad+\frac{t_{y}^{n_{y}-m+1}\left(1-t_{y}\right)^{n_{y}-m+1}\left(\left(1-t_{y}\right)^{n_{y}-m+1}-t_{y}^{n_{y}-m+1}\right)}{\left(1-t_{y}\right)^{n_{y}-m+3}-t_{y}^{n_{y}-m+3}}\right) \\
& \quad \times \frac{1}{\left(t_{x}+t_{y}\right)^{m}}+\frac{1}{\left(t_{x}+t_{y}\right)^{n}} \tag{29}
\end{align*}
$$

for $t_{x} \neq \frac{1}{2}$ and $t_{y} \neq \frac{1}{2}$.
Proof. Since $x_{*} \notin X$ and $y_{*} \notin Y$, we construct the interpolational two-dimensional continued C^{\prime}-fraction on the basis of the values of the function $f(x, y)$ at the grid nodes $G_{n_{x y}+1}=\left\{x_{0}, \ldots, x_{n_{x}}, x_{n_{x}+1}\right\} \times$ $\left\{y_{0}, \ldots, y_{n_{y}}, y_{n_{y}+1}\right\}$, where $x_{n_{x}+1}=x_{*}$ and $y_{n_{y}+1}=y_{*}$, as follows:

$$
\begin{equation*}
D_{n_{x y}+1}(x, y)=b_{00}+\Phi_{0}^{\left(n_{x}+1, n_{y}+1\right)}(x, y)+\varliminf_{i=1}^{n+1} \frac{b_{i i}\left(x-x_{i-1}\right)\left(y-y_{i-1}\right)}{1+\Phi_{i}^{\left(n_{x}+1, n_{y}+1\right)}(x, y)}, \tag{30}
\end{equation*}
$$

where

$$
\Phi_{i}^{\left(n_{x}+1, n_{y}+1\right)}(x, y)=K_{j=i+1}^{n_{x}+1} \frac{b_{j i}\left(x-x_{j-1}\right)}{1}+K_{j=i+1}^{n_{y}+1} \frac{b_{i j}\left(y-y_{j-1}\right)}{1} .
$$

The two-dimensional continued C^{\prime}-fraction (30) is an interpolational one, i.e., by construction, $D_{n_{x y}+1}\left(x_{*}, y_{*}\right)=$ $f\left(x_{*}, y_{*}\right)$. Then

$$
f\left(x_{*}, y_{*}\right)-D_{n_{x y}}\left(x_{*}, y_{*}\right)=D_{n_{x y}+1}\left(x_{*}, y_{*}\right)-D_{n_{x y}}\left(x_{*}, y_{*}\right) .
$$

The difference of $D_{n_{x y}+1}\left(x_{*}, y_{*}\right)$ and $D_{n_{x y}}\left(x_{*}, y_{*}\right)$ is determined by relation (4).
Using Theorem 5 and the method of complete mathematical induction, we prove that

$$
\begin{gather*}
\left|Q_{k}^{n_{x y}}\right| \geq t_{x}+t_{y}, \quad k=1,2, \ldots, n \\
\left|Q_{k}^{n_{x y}+1}\right| \geq t_{x}+t_{y}, \quad k=1,2, \ldots, n+1 \tag{31}
\end{gather*}
$$

The moduli of the denominators $Q_{n_{x}, m}, Q_{n_{x}+1, m}, Q_{m, n_{y}}$, and $Q_{m, n_{y}+1}$ of the continued fractions are estimated according to Corollary 1. Using estimates (22), (31), and (4), we obtain inequalities (26) - (29).

REFERENCES

1. V. Ya. Skorobogat'ko, Theory of Branching Continued Fractions and Its Application to Computational Mathematics [in Russian], Nauka, Moscow (1983).
2. A. Cuyt and B. Verdonk, Different Technique for the Construction of Multivariate Rational Interpolation and Padé Approximants, Instelling University, Antwerpen (1988).
3. M. M. Pahirya, "Interpolation of functions by continued fractions and by branching continued fractions of special form," Nauk. Visn. Uzhhorod Univ., Ser. Mat., Issue 1, 72-79 (1994).
4. M. M. Pahirya, "Interpolation of functions by continued fractions and their generalizations in the case of functions of many variables," Nauk. Visn. Uzhhorod Univ., Ser. Mat., Issue 3, 155-164 (1998).
5. M. M. Pahirya, "On the construction of two-dimensional and three-dimensional interpolational continued fractions," Nauk. Visn. Uzhhorod Univ., Ser. Mat., Issue 4, 85-89 (1999).
6. M. Pahirya, "About the construction of two-dimensional and three-dimensional interpolating continued fractions," Commun. Analyt. Theory Contin. Fract., 8, 205-207 (2000).
7. Kh. Kuchmins'ka and S. Vozna, "On Newton-Thiele-like interpolating formula," Commun. Analyt. Theory Contin. Fract., 8, 74-79 (2000).
8. Kh. I. Kuchmins'ka, O. M. Sus', and S. M. Vozna, "Approximation properties of two-dimensional continued fractions," Ukr. Mat. Zh., 55, No. 1, 30-44 (2003).
9. M. Pahirya and T. Svyda, "Problem of interpolation function of two-dimensional and three-dimensional interpolating continued fractions," Commun. Analyt. Theory Contin. Fract., 11, 64-80 (2003).
10. D. I. Bodnar, Branching Continued Fractions [in Russian], Naukova Dumka, Kiev (1986).
11. W. Haussmann, "On a multivariate Rolle type theorem and the interpolation remainder formula," Int. Ser. Numer. Math., 51, 137-145 (1979).
12. M. Pahirya, "Some new aspects of Thiele interpolation continued fraction," Commun. Analyt. Theory Contin. Fract., 9, 21-29 (2001).

МУКАЧІВСЬКИЙ ДЕРЖАВНИЙ УНІВЕРСИТЕТ

89600, м. Мукачево, вул. Ужгородська, 26
тел./факс +380-3131-21109
Веб-сайт університету: www.msu.edu.ua
E-mail: info@msu.edu.ua, pr@mail.msu.edu.ua
Веб-сайт Інституційного репозитарію Наукової бібліотеки Мду: http://dspace.msu.edu.ua:8080
Веб-сайт Наукової бібліотеки МДУ: http://msu.edu.ua/library/

