
Ukrainian Mathematical Journal, Vol. 58, No. 6, 2006

PROBLEM OF INTERPOLATION OF FUNCTIONS BY
TWO-DIMENSIONAL CONTINUED FRACTIONS

M. M. Pahirya and T. S. Svyda UDC 517.518:519.652

We investigate the problem of interpolation of functions of two real variables by two-dimensional contin-
ued fractions.

1. Introduction

The problem of interpolation of functions of two real variables by two-dimensional continued fractions was
studied by Kuchmins’ka [1] and Cuyt [2]. Later, this problem was investigated in [3–6], where, in particular,
a somewhat different algorithm for the determination of the coefficients of the interpolational two-dimensional
continued fraction was proposed and the method was generalized to the problem of interpolation of functions
of three real variables by three-dimensional continued fractions. Other types of interpolational two-dimensional
continued fractions were considered in [7–9]. In the present paper, we continue the investigations begun in [9].

2. Interpolational Two-Dimensional Continued Fractions

Consider the two-dimensional continued fraction

D(x, y) = Φ0(x, y) +
∞

K
i=1

aii(x, y)
Φi(x, y)

, (1)

where

Φi(x, y) = bii(x, y) +
∞

K
j=i+1

aji(x, y)
bji(x, y)

+
∞

K
j=i+1

aij(x, y)
bij(x, y)

, i = 0, 1, . . . ,

aij(x, y) �≡ 0, and bij(x, y) are functions of two variables.

Definition 1. The finite functional two-dimensional continued fraction

D(nx,ny)(x, y) = Φ(nx,ny)
0 (x, y) +

n

K
i=1

aii(x, y)

Φ(nx,ny)
i (x, y)

, n = min{nx, ny}, (2)

where
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Φ(nx,ny)
i (x, y) = bii(x, y) +

nx

K
j=i+1

aji(x, y)
bji(x, y)

+
ny

K
j=i+1

aij(x, y)
bij(x, y)

, i = 0, 1, . . . , n,

is called the (nx, ny)-convergent of the two-dimensional continued fraction (1).

In what follows, we assume that

t

K
s=r

as

bs
= 0 if r > t.

Denote nxy = (nx, ny).
Using an analog of the inverse recurrence algorithm [4, 5], we represent the two-dimensional continued fraction

(2) in the form Dnxy(x, y) =
Pnxy(x, y)
Qnxy(x, y)

, where Pnxy(x, y) is the numerator and Qnxy(x, y) is the denominator

of convergent (2).

3. Relation for the Difference of Convergents

Using the methods of [10], we can find a relation for the difference of convergents. Denote the remainder [the
tail of the two-dimensional continued fraction (2)] by

Q
nxy

k = Φnxy

k (x, y) +
n

K
i=k+1

aii(x, y)
Φnxy

i (x, y)
, k = 0, . . . , n − 1,

Q
nxy
n = Φnxy

n (x, y).

(3)

Let nxy + 1 = (nx + 1, ny + 1). Then

Dnxy+1 − Dnxy =
n∑

m=0

⎛⎜⎝(−1)nx+1
∏nx+1

j=m+1
ajm

Qnx,m Qnx+1,m
+

(−1)ny+1
∏ny+1

j=m+1
amj

Qm,ny Qm,ny+1

⎞⎟⎠ m∏
s=1

ass

Q
nxy
s Q

nxy+1
s

+
(−1)n

∏n+1

s=1
ass

Q
nxy+1
n+1

∏n

s=1
Q

nxy
s Q

nxy+1
s

, (4)

where Qnx,m is the denominator of the continued fraction
nx

K
i=m+1

aim

bim
and Qm,ny is the denominator of the

continued fraction
ny

K
i=m+1

ami

bmi

(
Qnx+1,m and Qm,ny+1 are defined by analogy

)
.

4. Relation for the Remainder of an Interpolational Two-Dimensional Continued Fraction

Let a function of two variables f(x, y) be continuous together with its partial derivatives up to the (kx + 1)th
order with respect to x and up to the (ky + 1)th order with respect to y on the set G = [αx, βx] × [αy, βy].
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We choose the decompositions X = {xi : xi ∈ [αx, βx], xi �= xl for i �= l, i, l = 0, 1, . . . , kx } and
Y = {yj : yj ∈ [αy, βy], yj �= yl for j �= l, j, l = 0, 1, . . . , ky}. The Cartesian product of these sets Gkxy =
X × Y = {(xi, yj) : xi ∈ X, yj ∈ Y } forms a grid in the set G. Assume that we have the functional two-
dimensional continued fraction (2), where nx = nx(kx) and ny = ny(ky).

Definition 2. The finite functional two-dimensional continued fraction (2) is called an interpolational two-
dimensional continued fraction if the following relations hold at the grid nodes Gkxy :

Dnxy(xi, yj) = cij , (5)

where cij = f(xi, yj), i = 0, 1, . . . , kx, j = 0, 1, . . . , ky.

If the two-dimensional continued fraction (2) is an interpolational one, then the difference

Rnxy(x, y) = f(x, y) − Pnxy(x, y)
Qnxy(x, y)

is called the remainder of the interpolational two-dimensional continued fraction. Assume that the partial numera-
tors aij(x, y) and partial denominators bij(x, y) are polynomials. Using Theorem 1 from [11], one can prove the
following statement:

Theorem 1 [9]. Suppose that f(x, y) ∈ C(kx+1,ky+1)(G), the two-dimensional continued fraction (2) is
an interpolational one, the numerator Pnxy(x, y) and denominator Qnxy(x, y) of fraction (2) are polynomials,
degx Pnxy(x, y) ≤ kx, and degy Pnxy(x, y) ≤ ky. Then there exist ξ, θ ∈ (αx, βx) and η, ν ∈ (αy, βy) such
that

Rnxy(x, y) = f(x, y) − Pnxy(x, y)
Qnxy(x, y)

=
1

Qnxy(x, y)

[
ωkx(x)

(kx + 1)!
∂kx+1 h(x, y)

∂xkx+1

∣∣∣∣
x=θ

+
ωky(y)

(ky + 1)!
∂ky+1 h(x, y)

∂yky+1

∣∣∣∣
y=ν

+
ωkx(x) ωky(y)

(kx + 1)! (ky + 1)!
∂kx+ky+2 h(x, y)
∂xkx+1∂yky+1

∣∣∣∣x=ξ
y=η

]
, (6)

where

ωkx(x) =
kx∏
i=0

(x − xi), ωky(y) =
ky∏

j=0

(y − yj), h(x, y) = Qnxy(x, y) f(x, y).

5. Kuchmins’ka–Cuyt-Type Interpolational Two-Dimensional Continued Fractions

Consider several types of interpolational two-dimensional continued fractions. We begin with an interpola-
tional two-dimensional continued fraction proposed by Kuchmins’ka [1] and Cuyt [2]. Assume that the partial
numerators aij(x, y) in the interpolational two-dimensional continued fraction (2) are defined by the formula
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aij(x, y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
x − xi−1 for i > j,

y − yj−1 for i < j,

(x − xi−1)(y − yi−1) for i = j,

the denominators bij are the coefficients, nx = kx, and ny = ky. In this case, we have the Kuchmins’ka–Cuyt
interpolational two-dimensional continued fraction

Dnxy(x, y) =
Pnxy(x, y)
Qnxy(x, y)

= Φnxy

0 (x, y) +
n

K
k=1

(x − xk−1)(y − yk−1)
Φnxy

k (x, y)
,

n = min{nx, ny},

(7)

where

Φnxy

k (x, y) = bkk +
nx

K
i=k+1

x − xi−1

bik
+

ny

K
i=k+1

y − yi−1

bki
.

Theorem 2 [5]. The interpolational two-dimensional continued fraction (7) is a fractional rational function
of two independent variables. The degrees of the polynomials Pnxy(x, y) and Qnxy(x, y) in x and y satisfy the
inequalities deg

k
Pnxy(x, y) ≤ r(nk) and deg

k
Qnxy(x, y) ≤ r(nk) + ε(nk), where

r(nk) =
(nk + 1)2 + ε(nk + 1)

4
and ε(nk) =

(−1)nk − 1
2

, k ∈ {x, y}.

It is easy to see that the number of the coefficients of the interpolational two-dimensional continued fraction (7)
is equal to the number of the interpolation nodes in Gnxy . The coefficients of the interpolational two-dimensional
continued fraction (7) can be determined by the Kuchmins’ka–Cuyt algorithm of inverse divided differences [1, 2]
or directly from condition (5). Consider the matrices

X = (xij)i,j=0,1,...,nx , xij =

⎧⎨⎩xi − xj for i > j,

1 for i ≤ j,
(8)

and

Y = (yij)i,j=0,1,...,ny , yij =

⎧⎨⎩yi − yj for i > j,

1 for i ≤ j.
(9)

For functions of two variables, the partial inverse divided difference of the kth order is defined by the relation

δk
ij =

xikyjk

δk−1
ij + θk

j δk−1
ik + θk

i δk−1
kj + θk

i θk
j δk−1

kk

, δ−1
ij = cij ,
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θt
s =

⎧⎨⎩−1 for s > t,

0 for s ≤ t,

i = 0, 1, . . . , nx, j = 0, 1, . . . , ny, k = 0, . . . , N − 1,

N = max{nx, ny}, i, j > k.

Proposition 1 [5, 6]. The coefficients of the interpolational two-dimensional continued fraction (7) satisfy the
relation

bij = δs−1
ij , (10)

where i = 0, 1, . . . , nx, j = 0, 1, . . . , ny, and s = max{i, j}.

6. Estimate for the Remainder of the Kuchmins’ka–Cuyt Interpolational
Two-Dimensional Continued Fraction

We use the following statement for continued fractions:

Theorem 3 [12]. If all partial numerators ak and partial denominators bk of the continued fraction

P
(n)
m

Q
(n)
m

=
n

K
k=m

ak

bk

satisfy the conditions |ak| ≤ d and |bk| ≥ d + 1, then

|Q(n)
m | ≥

⎧⎪⎪⎨⎪⎪⎩
dn+1−m − 1

d − 1
for d �= 1,

n + 1 − m for d = 1.

Theorem 4. Suppose that the following conditions are satisfied:

(i) for a function f(x, y) continuous in the domain G, the interpolational two-dimensional continued frac-
tion (7) is defined, the coefficients of which are determined by the values of the function at the grid nodes
Gnxy according to formulas (10);

(ii) the coefficients of the interpolational two-dimensional continued fraction (7) satisfy the conditions |bij | ≥
dx + 1, |bji| ≥ dy + 1, i > j, and |bii| ≥ dxdy + 3, i = 1, . . . , n, where dx = βx − αx and
dy = βy − αy;

(iii) there exists a point (x∗, y∗) ∈ G, x∗ /∈ X, y∗ /∈ Y, such that |bnx+1,j(x∗)| ≥ dx + 1, |bi,ny+1(y∗)| ≥
dy + 1, i = 0, 1, . . . , nx, j = 0, . . . , ny, and |bn+1,n+1(x∗, y∗)| ≥ dx dy + 3, where the coefficients
bnx+1,j(x∗), bi,ny+1(y∗), and bn+1,n+1(x∗, y∗) are determined by relations (10) with xnx+1 = x∗ and
yny+1 = y∗.
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Then the following inequality is true:

∣∣f(x∗, y∗) − Dnxy(x∗, y∗)
∣∣

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑n

m=0

dnx+1
x (dx − 1)2

dm
y (dnx+1

x − dm
x )(dnx+2

x − dm
x )

+
∑n

m=0

d
ny+1
y (dy − 1)2

dm
x (dny+1

y − dm
y )(dny+2

y − dm
y )

+
1

dn
xdn

y

,

dx �= 1, dy �= 1,

∑n

m=0

1
dm

y (nx + 1 − m)(nx + 2 − m)
+

∑n

m=0

d
ny+1
y (dy − 1)2

(dny+1
y − dm

y )(dny+2
y − dm

y )
+

1
dn

y

,

dx = 1, dy �= 1,

∑n

m=0

dnx+1
x (dx − 1)2

(dnx+1
x − dm

x )(dnx+2
x − dm

x )
+

∑n

m=0

1
dm

x (ny + 1 − m)(ny + 2 − m)
+

1
dn

x

,

dx �= 1, dy = 1,

∑n

m=0

1
(nx + 1 − m)(nx + 2 − m)

+
∑n

m=0

1
(ny + 1 − m)(ny + 2 − m)

+ 1,

dx = 1, dy = 1.

Proof. Let us choose the point (x∗, y∗). By virtue of the conditions of the theorem, we have x∗ /∈ X

and y∗ /∈ Y. Using the values of the function f(x, y) at the grid nodes Gnxy+1 = {x0, . . . , xnx , xnx+1} ×
{y0, . . . , yny , yny+1}, where xnx+1 = x∗ and yny+1 = y∗, we construct one more interpolational two-dimen-
sional continued fraction as follows:

Dnxy+1(x, y) = Φnxy+1
0 (x, y) +

n+1

K
k=1

(x − xk−1)(y − yk−1)

Φnxy+1
k (x, y)

, (11)

where

Φnxy+1
k (x, y) = bkk +

nx+1

K
i=k+1

x − xi−1

bik
+

ny+1

K
i=k+1

y − yi−1

bki
, k = 0, 1, . . . , n + 1.

It is easy to see that the coefficients bij , i = 0, 1, . . . , nx, j = 0, 1, . . . , ny, in the interpolational two-dimensional
continued fraction (11) are equal to the corresponding coefficients in the interpolational two-dimensional continued
fraction (7) by construction, and the coefficients bnx+1,i = bnx+1,i(x∗), bi,ny+1 = bi,ny+1(y∗), and bn+1,n+1 =
bn+1,n+1(x∗, y∗) are determined by relations (10).

The continued fraction (11) is an interpolational one, i.e., Dnxy+1(x∗, y∗) = f(x∗, y∗) by construction. We
have

f(x∗, y∗) − Dnxy(x∗, y∗) = Dnxy+1(x∗, y∗) − Dnxy(x∗, y∗). (12)
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The difference of the convergents Dnxy+1(x∗, y∗)−Dnxy(x∗, y∗) is determined by relation (4) for ajm = x−xj−1,

j = m+1, . . . , nx+1, amj = y−yj−1, j = m+1, . . . , ny+1, m = 0, 1, . . . , n, and ass = (x−xs−1)(y−ys−1),
s = 1, 2, . . . , n.

Using the method of complete mathematical induction, we prove that

∣∣Qnxy

k

∣∣ ≥ dxdy, k = 1, 2, . . . , n,
∣∣Qnxy+1

k

∣∣ ≥ dxdy, k = 1, 2, . . . , n + 1. (13)

The moduli of the denominators Qnx,m, Qnx+1,m, Qm,ny , and Qm,ny+1 of the continued fractions are
estimated according to Theorem 3, which completes the proof of the theorem.

7. Interpolational Two-Dimensional Continued C′-Fraction

Consider an interpolational two-dimensional continued fraction in the form of the C′-fraction

Dnxy(x, y) = b00 + Φnxy

0 (x, y) +
n

K
i=1

bii(x − xi−1)(y − yi−1)
1 + Φnxy

i (x, y)
, n = min{nx, ny}, (14)

where

Φnxy

i (x, y) =
nx

K
j=i+1

bji(x − xj−1)
1

+
ny

K
j=i+1

bij(y − yj−1)
1

, i = 0, 1, . . . , n.

We define the coefficients of the interpolational two-dimensional continued C′-fraction (14) so that condition
(5) is satisfied at the nodes of the set Gnxy . Denote

β
(k)
ij =

ω
(k−1)
ij

xikyj k

⎡⎣ 1

β
(k−1)
ij

+
θk
j

β
(k−1)
ik

+
θk
i

β
(k−1)
kj

+
θk
j θk

i

β
(k−1)
kk

⎤⎦, (15)

where

ω
(k−1)
ij =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

β
(k−1)
ik for j > i, i < k,

β
(k−1)
kj for i > j, j < k,

β
(k−1)
kk for i ≥ k, j ≥ k,

β
(0)
ij =

cij + θ0
j ci0 + θ0

i c0j + θ0
j θ

0
i c00

xi0 yj0
,

i = 0, 1, . . . , nx, j = 0, 1, . . . , ny, k = 1, 2, . . . , N − 1, N = max{nx, ny}.
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Proposition 2. The coefficients of the interpolational two-dimensional continued fraction (14) can be deter-
mined by the relation

bij = β
(k−1)
ij , i = 0, 1, . . . , nx, j = 0, 1, . . . , ny, k = max{i, j}. (16)

Proof. We prove formula (16) by the method of complete mathematical induction by analogy with [4]. It is
easy to see that this formula holds for the coefficients Φnxy

0 (x, y) [9] for any nx and ny. For k = 0, . . . , nx and
m = 0, . . . , ny, the following equality is true:

Φnxy

0 (xk, ym) =
nx

K
j=1

bj0xkj−1

1
+

ny

K
j=1

b0jymj−1

1
= ck0 + c0m − 2 b00. (17)

Assume that the coefficients Φnxy

k (x, y), k = 1, 2, . . . , n, are determined by (16) for n = t − 1. Let n = t. We
have

Dtxy(x, y) = b00 + Φtxy

0 (x, y) +
b11 (x − x0) (y − y0)

1 + Φtxy

1 (x, y) +
t

K
i=2

bii (x − xi−1) (y − yi−1)

1 + Φtxy

i (x, y)

. (18)

Denote

μ(x, y) = 1 + Φtxy

1 (x, y) +
t

K
i=2

bii (x − xi−1) (y − yi−1)

1 + Φtxy

i (x, y)
. (19)

Then we rewrite (18) in the form

Dtxy(x, y) = b00 + Φtxy

0 (x, y) +
b11 (x − x0) (y − y0)

μ(x, y)
.

Since Dtxy(xi, yj) = cij for i = 0, 1, . . . , tx and j = 0, 1, . . . , ty, taking (17) into account we get

μij = μ(xi, yj) =
b11xi0yj0

cij − ci0 − c0j − c00
.

The two-dimensional continued fraction (19) has t − 1 levels, and its coefficients are, by assumption, deter-
mined by relation (16). Thus, we have

bij = β̃
(k−1)
ij , i = 1, 2, . . . , tx, j = 1, 2, . . . , ty, k = max{i, j}, (20)

where

β̃
(k)
ij =

ω̃
(k−1)
ij

xikyjk

⎡⎣ θk
j θk

i

β̃
(k−1)
kk

+
θk
j

β̃
(k−1)
ik

+
θk
i

β̃
(k−1)
kj

+
1

β̃
(k−1)
ij

⎤⎦ ,
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ω̃
(k−1)
ij =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

β̃
(k−1)
ik for j > i, i < k,

β̃
(k−1)
j k for i > j, j < k,

β̃
(k−1)
kk for i ≥ k, j ≥ k,

β̃
(1)
ij =

μij − μi1 − μ1j + μ11

xi1 yj1
.

It is obvious that β̃
(1)
ij = β

(1)
ij . It is easy to verify that β̃

(k)
ij = β

(k)
ij , i = 2, . . . , tx, j = 2, . . . , ty. Thus, in

this case, relation (16) is also true.

Proposition 3. The interpolational two-dimensional continued fractions (7) and (14) are equivalent.

Proof. Let bij , i = 0, . . . , nx, j = 0, . . . , ny, i �= j, and bkk, k = 0, . . . , n, be the coefficients of the
interpolational two-dimensional continued fraction (7) and let b∗ij , i = 0, . . . , nx, j = 0, . . . , ny, i �= j, and
b∗kk, k = 0, . . . , n, be the coefficients of the interpolational two-dimensional continued fraction (14). It is easy to
see that

b∗00 = b00, b∗10 =
1

b10
, b∗01 =

1
b01

, b∗i0 =
1

bi0bi−10
, i = 2, . . . , nx,

b∗0i =
1

b0ib0i−1
, i = 2, . . . , ny,

b∗11 =
1

b11
, b∗ii =

1
biibi−1i−1

, i = 2, 3, . . . , n,

b∗ki =
1

bk−1ibki
, i = 1, . . . , n, k = i + 1, . . . , nx,

b∗ik =
1

bik−1bik
, i = 1, . . . , n, k = i + 1, . . . , ny.

The algorithms presented in the previous sections enable one to independently determine the coefficients of
the indicated interpolational two-dimensional continued fractions in terms of the values of the function at the grid
nodes.

8. Estimate for the Remainder of the Interpolational Two-Dimensional Continued C′-Fraction

Using the Bodnar method [10] (Theorems 3.14 and 3.15), one can prove the following theorem:
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Theorem 5. If the coefficients of the continued fraction b0 +
∞

K
i=1

bi

1
satisfy the conditions |b0| ≤ 1 and

|bi| ≤ α = t(1 − t), 0 ≤ t ≤ 1
2
, i = 1, 2, . . . , then the following assertions are true:

(i) the continued fraction is convergent;

(ii) the following estimates for the rate of convergence are true:

|fn − fm| ≤

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n − m

2(n + 1)(m + 1)
if t =

1
2
,

(1 − 2t)tm+1(1 − t)m+1((1 − t)n−m − tn−m)
((1 − t)n+1 − tn+1)((1 − t)m+1 − tm+1)

if 0 ≤ t <
1
2
;

(21)

(iii) for each n = 0, 1, . . . , the convergent fn satisfies the inequality |fn − b0| ≤ t.

Let Q
(s)
k = 1 +

s

K
i=k+1

bi

1
denote the remainder of the continued fraction.

Corollary 1. Under the conditions of Theorem 5, the following estimate is true:

∣∣∣Q(s)
k

∣∣∣ ≥
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

s − k + 2
2(s − k + 1)

, t =
1
2
,

(1 − t)s−k+2 − ts−k+2

(1 − t)s−k+1 − ts−k+1
, 0 ≤ t <

1
2
.

(22)

Proof. The fraction 1 +
∞

K
i=1

−t(1 − t)
1

is a majorant of this continued fraction. Let Pm, Qm, and gm

denote, respectively, the numerator, denominator, and mth convergent of the majorizing continued fraction. It can
be shown that Pm = Qm+1 > 0 and

Qm = (1 − t)m + t(1 − t)m−1 + . . . + tm, m = 1, 2, . . . . (23)

Using the method of mathematical induction, one can easily verify that

∣∣∣Q(s)
k

∣∣∣ ≥ gs−k. (24)

Using (23) and (24) for t =
1
2
, we get

∣∣∣Q(s)
k

∣∣∣ ≥ gs−k =
Qs−k+1

Qs−k
=

s − k + 2
2(s − k + 1)

.
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Performing the change of variables t = x−1 in (23), we get

Qp =
(x − 1)p

xp
+

(x − 1)p−1

xp
+ . . . +

1
xp

=
(x − 1)p+1 − 1

xp(x − 2)
.

Returning to the variable t, we obtain

Qp = ((1 − t)p+1 − tp+1)(1 − 2t)−1. (25)

Taking relations (24) and (25) into account, we get

∣∣∣Q(s)
k

∣∣∣ ≥ gs−k =
Qs−k+1

Qs−k
=

(1 − t)s−k+2 − ts−k+2

(1 − t)s−k+1 − ts−k+1
.

Thus, estimate (22) is true.

Theorem 6. Suppose that the following conditions are satisfied:

(i) for a continuous function f(x, y) defined in the domain G, the interpolational two-dimensional contin-
ued C′-fraction (14) is constructed so that its coefficients are determined by the values of the function at
the grid nodes Gnxy ;

(ii) the coefficients of the interpolational two-dimensional continued C′-fraction (14) satisfy the conditions

|aij | ≤

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

tx(1 − tx) ∀x ∈ [αx, βx], i > j, i = 0, . . . , nx, j = 0, . . . , ny,

ty(1 − ty) ∀y ∈ [αy, βy], i < j, i = 0, . . . , nx, j = 0, . . . , ny,

tx + ty ∀(x, y) ∈ G, i = j, i = 0, 1, . . . , n,

where 0 ≤ tx, ty ≤ 1
2
, aij = bij(y − yj−1), aji = bji(x − xj−1), and aii = bii(x − xi−1)(y − yi−1);

(iii) there exists a point (x∗, y∗) ∈ G, x∗ /∈ X, y∗ /∈ Y, for which the following inequalities hold:
|anx+1j(x∗)| ≤ tx(1 − tx), j = 0, . . . , ny,

∣∣ainy+1(y∗)
∣∣ ≤ ty(1 − ty), i = 0, 1, . . . , nx, and

|an+1n+1(x∗, y∗)| ≤ tx + ty, where the quantities bnx+1j(x∗), biny+1(y∗), and bn+1n+1(x∗, y∗) are
determined by relations (20) for xnx+1 = x∗ and yny+1 = y∗.

Then the following estimates is true:

∣∣f(x∗, y∗) − Dnxy(x∗, y∗)
∣∣ ≤ n∑

m=0

(
2−2(nx−m)(nx − m + 1)

nx − m + 3
+

2−2(ny−m)(ny − m + 1)
ny − m + 3

)
+ 1 (26)

for tx =
1
2

and ty =
1
2
,



PROBLEM OF INTERPOLATION OF FUNCTIONS BY TWO-DIMENSIONAL CONTINUED FRACTIONS 965

∣∣f(x∗, y∗) − Dnxy(x∗, y∗)
∣∣

≤
n∑

m=0

(
tnx−m+1
x (1 − tx)nx−m+1((1 − tx)nx−m+1 − tnx−m+1

x )
(1 − tx)nx−m+3 − tnx−m+3

x

+
2−2(ny−m)(ny − m + 1)

ny − m + 3

)

×
1

(tx + 1/2)m
+

1
(tx + 1/2)n

(27)

for tx �= 1
2

and ty =
1
2
,

∣∣f(x∗, y∗) − Dnxy(x∗, y∗)
∣∣

≤
n∑

m=0

(
t
ny−m+1
y (1 − ty)ny−m+1((1 − ty)ny−m+1 − t

ny−m+1
y )

(1 − ty)ny−m+3 − t
ny−m+3
y

+
2−2(nx−m)(nx − m + 1)

nx − m + 3

)

×
1

(ty + 1/2)m
+

1
(ty + 1/2)n

(28)

for tx =
1
2

and ty �= 1
2
, and

∣∣f(x∗, y∗) − Dnxy(x∗, y∗)
∣∣

≤
n∑

m=0

(
tnx−m+1
x (1 − tx)nx−m+1((1 − tx)nx−m+1 − tnx−m+1

x )
(1 − tx)nx−m+3 − tnx−m+3

x

+
t
ny−m+1
y (1 − ty)ny−m+1((1 − ty)ny−m+1 − t

ny−m+1
y )

(1 − ty)ny−m+3 − t
ny−m+3
y

)

×
1

(tx + ty)m
+

1
(tx + ty)n

(29)

for tx �= 1
2

and ty �= 1
2
.

Proof. Since x∗ /∈ X and y∗ /∈ Y, we construct the interpolational two-dimensional continued C′-frac-
tion on the basis of the values of the function f(x, y) at the grid nodes Gnxy+1 = {x0, . . . , xnx , xnx+1} ×
{y0, . . . , yny , yny+1}, where xnx+1 = x∗ and yny+1 = y∗, as follows:

Dnxy+1(x, y) = b00 + Φ(nx+1,ny+1)
0 (x, y) +

n+1

K
i=1

bii(x − xi−1)(y − yi−1)

1 + Φ(nx+1,ny+1)
i (x, y)

, (30)
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where

Φ(nx+1,ny+1)
i (x, y) =

nx+1

K
j=i+1

bji(x − xj−1)
1

+
ny+1

K
j=i+1

bij(y − yj−1)
1

.

The two-dimensional continued C′-fraction (30) is an interpolational one, i.e., by construction, Dnxy+1(x∗, y∗) =
f(x∗, y∗). Then

f(x∗, y∗) − Dnxy(x∗, y∗) = Dnxy+1(x∗, y∗) − Dnxy(x∗, y∗).

The difference of Dnxy+1(x∗, y∗) and Dnxy(x∗, y∗) is determined by relation (4).
Using Theorem 5 and the method of complete mathematical induction, we prove that∣∣Qnxy

k

∣∣ ≥ tx + ty, k = 1, 2, . . . , n,

∣∣∣Qnxy+1
k

∣∣∣ ≥ tx + ty, k = 1, 2, . . . , n + 1.

(31)

The moduli of the denominators Qnx,m, Qnx+1,m, Qm,ny , and Qm,ny+1 of the continued fractions are
estimated according to Corollary 1. Using estimates (22), (31), and (4), we obtain inequalities (26) – (29).
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