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Abstract— Consecutive inclusion of additional physical 

parameters (color, phase, sign of charge, spin, etc.) in the 

symmetric description led to creation of the theory of color 

symmetry and the concept of superspatial symmetry. Being 

based on the latter approach, a method for calculating the 

phonon dependences of complex crystals was developed in 

continuation. Among the varieties of generalized symmetry, the 

concept of superspatial symmetry is quite convenient and visual 

when constructing (3+d) dimensional models for describing the 

crystal structure of complex crystals and systems united by a 

single metric and scale of the protocrystal carrier function. 

Software was developed and model calculations of phonon 

spectra of crystals of BaTiO3 type crystals in equidistant and 

non-equidistant approximations for the field of force interaction 

were carried out. It is shown that the non-physical 5-fold 

degeneracy at the point R of the Brillouin zone in the 

calculations in the equidistant approximation of the force field 

splits when considering the non-equivalent force interaction. 

Keywords—phonon, dispersion, super speisymmetry, power 

constant, crystal structure 

I. INTRODUCTION 

The concept of superspace symmetry was initiated in 
the papers of de Wolff and his colleagues [1] in the 80s of the 
last century, was developed in various mathematical 
directions and physical applications. Its main direction can be 
considered its application for reviewing of problems of 
generalized symmetry Its main direction can be considered 
its application for reviewing of problems of generalized 
symmetry [2] and description of the crystal structure of 
incommensurable phases and comparison of its methods with 
traditional approaches [3,4]. A number of physical 
applications were also developed [5,6]. In continuation of the 
paper [7], a method was developed for calculating model 
phonon spectra of complex crystals of cubic syngonia in the 
equidistant approximation [8,9].Formation of the (3+d) 
dimensional metric of the protocrystal is based on its higher 
symmetry and is associated with an additional d-dimensional 
space [7], which allows the description of real objects 
(crystals and systems) as natural (sa×sa×sa)-superlattices 
[8,9]. The use of a complete set of modulation vectors makes 
it possible to determine the amplitudes of the mass 
modulation functions and the Fourier components of the 
dynamic matrices. Being based on them, it is possible to 

generate a generalized dynamic matrix, in the form of a 
superposition of the Fourier components of the dynamic 
matrices of the protocrystal, built based on different starting 
points localized in occupied positions of the protocrystal, and 
determined taking into account their composition at various 
points of the Brillouin zone, connected by modulation 
vectors, and mass perturbation matrices described by 
amplitudes of mass modulation functions. 

The compositional features of the realization of complex 
crystals and systems by the mechanism of filling with atoms 
of different types and vacancies, translationally equivalent 
positions given by the basis of the protocrystal, are covered by 
the concept of superspatial symmetry [4]. Dispersion curves 
of the phonon spectrum of complex crystals are defined as 
solutions of the matrix equation: 

 |А − ω2В|=0, (1) 

where A is formed from the Fourier components of the 
dynamic matrices of a monatomic protocrystal. Matrix B is 
formed in a similar way from the amplitudes of mass 
modulation functions [2-4]. Dynamic matrices of a 
monatomic protocrystal ���(� + 
�) are determined from the 

relation [4-5] 

 ���(� + 
�
 = ∑ ��(���
 ������ �1 − ��(����
�� (2) 

where −nα  the force constant of the interaction between the 

atom in the 0-th position and the atom in the l-th position,  � ,  � are the projections of the l vector on the β, γ axis. 

II. CALCULATIONS 

One of the simplest families of crystal structures that can 
be described as (sa×sa×sa) superlattices, namely, as 
(2a×2a×2a) superlattice based on a simple cubic lattice (SCL) 
(Fig. 1) is a family of the perovskite class. We will use it as an 
illustration of the calculation method. 

At the same time, we note the difference in the 
combinations of filling the orbits with atoms depending on the 
choice of localization of the starting point for describing the 
motif of the structure (Fig. 2) (a well-known setting for 
describing the perovskite motif). 
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Fig. 1. The structure of the BaTiO3 crystal as a (2a×2a×2a) superlattice 
based on SCL. 

 

Fig. 2. Crystal structure of the АВХ3 type of an ideal cubic perovskite with 
different starting points for describing the motif: the starting point is related 
to the Ti (a) and Ba (b) atoms. 

Thus, the composite superlattice is obtained modulating 
SCL by using 8 modulation vectors for the (2a×2a×2a)-
superlattice. The implementation of description of real crystal 
structures by choosing (3+d)-dimensional bases [7-9] allows 
us to introduce a description that covers the possibility of 
filling the SCL positions of the structures with (sa×sa×sa)-
superlattices. This description of crystal formations of cubic 
syngonia with (sa×sa×sa)-superlattices is embedded in (3+d)-
dimensional bases: 

direct: 
a1 = (a, 0, 0, −b/s, 0, 0); 
a2 = (0, a, 0, 0, −b/s, 0); 
a3 = (0, 0, a, 0, 0, −b/s); 
a4 = (0, 0, 0, b, 0, 0); 
a5 = (0, 0, 0, 0, b, 0); 
a6 = (0, 0, 0, 0, 0, b) 
 

and inverse: 
a1

∗ = (2π/a, 0, 0, 0, 0, 0);  
a2

∗ = (0, 2π/a, 0, 0, 0, 0);  
a3

∗ = (0, 0, 2π/a, 0, 0, 0); 
a4

∗ = (2π/sa, 0, 0, 2π/b, 0, 0);  
a5

∗ = (0, 2π/sa, 0, 0, 2π/b, 0);  
a6

∗ = (0, 0, 2π/sa, 0, 0, 2π/b). 

The (3+d)-dimensional description of BaTiO3 crystals 
with a (2a×2a×2a)-superlattice covers a set of eight 
modulation vectors, which can be decomposed into 4 stars: 

1. (0, 0, 0) – dimensionality one; 
2. (π/a, π/a, 0) – dimensionality three; 
3. (π/a, π/a, π/a) – dimensionality one; 

4. (π/a, 0, 0) – dimensionality three. 

 

The motif of the structure allows us to determine eight 
possible initial starting points for formation of the orbit, which 
are given by the radius vectors: rTi = (0, 0, 0), rO = (2a(1/2, 0, 
0), 2a(0, 1/2, 0), 2a(0, 0, 1/2)) rBa = 2a(1/2, 1/2, 1/2), rVac = 
(2a(1/2, 1/2, 0), 2a(1/2, 0, 1/2), 2a(0. 1/2, 1/2). Fig. 2a shows 
the setup with the starting point localized on the Ti atom. 

Note that the implementation of any motif of a real crystal 
is carried out by filling specific positions of the superlattice. 
The solution of the system of equations (3) allows us to 
determine the mass distribution function given in the form of 
a superposition of the modulation functions #$ = #(
$ , %$∗
: 

 &('� , (�
 = ∑ #)$*� (
$ , %$∗
�+,-.(
$'� + %$∗(�
/ (3) 

Solutions (3) (for any fixed value of τ) of crystals 
(АВС3D3) take the form 

#(
0
 = 12�1��13�14�15�16�17�18) ;  
#(
:
 = 12;1��13�14;15;16�17;18) ;  
#(
<
 = 12�1�;13�14;15�16;17;18) ;  

    #(
=
 = 12�1��13;14�15;16;17;18)  ; (4) 

 #(
>
 = 12;1�;13�14�15;16;17�18)  ;  
 #(
?
 = 12;1��13;14;15�16;17�18) ;  
 #(
@
 = 12�1�;13;14;15;16�17�18) ;  
#(
)
 = 12;1�;13;14�15�16�17;18) .  

Here mj is the mass at position i, ρ(qi)= ρi – amplitudes of the 
mass modulation functions 

After introducing the motif of BaTiO3 crystals, the 
solutions of the system of equations (4) take the form: 

 #� = 1B�1C�<1D�1E)   

 #0 = 1B;1C;<1D�<1E)  (5) 

 #: = 1B�1C;1D;1E)   

 #< = 1B;1C�1D;1E)   

The determined values of the amplitudes of the mass 
modulation functions allow forming the mass defect matrix 
B in the form
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F = #�
� − 
$� =
⎝
⎜⎜
⎜⎜
⎛

#0 #: #< #= #> #? #@ #)#: #0 #> #? #< #= #) #@#< #> #0 #@ #: #) #= #=#= #? #@ #0 #) #: #< #>#> #< #: #) #0 #@ #? #=#? #= #) #: #@ #0 #> #<#@ #) #= #< #? #> #0 #:#) #@ #? #> #= #< #: #0⎠
⎟⎟
⎟⎟
⎞

⊗ N1 0 00 1 00 0 1P (6) 

 

Formation of the generalized dynamic matrix A is related 
with determination of the Fourier components of the dynamic 
matrices of a monoatomic protocrystal. To do this, we modify 
the relation (2), assuming a dependence on the type of 
interacting atoms for the force constant: 

���Q (� + 
�
 = ∑ ��Q ������(���
 �1 − ��(����
�� (7) 

where the index p specifies the localization of the starting 
point. Let us set for the dynamic matrices � ��(� + 
�
  a 

system similar to (3) and determine #R���Q (� + 
�
, (
�  −
$  S and write the matrix A in the form 

 

А = # R���Q (� + 
�
, �
� − 
$�S = # U����;�V��� + 
$�W = ����;�V���, 
$�

=  

⎝
⎜⎜
⎜⎜
⎜⎜
⎛

��2(�, 
0
 ���(�, 
0
 ��3(�, 
0
 ��4(�, 
0
 ��5(�, 
0
 ��6(�, 
0
 ��7(�, 
0
 ��8(�, 
0
���(�, 
:
 ��2(�, 
:
 ��5(�, 
:
 ��6(�, 
:
 ��3(�, 
:
 ��4(�, 
:
 ��8(�, 
:
 ��7(�, 
:
��3(�, 
<
 ��5(�, 
<
 ��2(�, 
<
 ��7(�, 
<
 ���(�, 
<
 ��8(�, 
<
 ��4(�, 
<
 ��6(�, 
<
��4(�, 
=
 ��6(�, 
=
 ��7(�, 
=
 ��2(�, 
=
 ��8(�, 
=
 ���(�, 
=
 ��3(�, 
=
 ��5(�, 
=
��5(�, 
>
 ��3(�, 
>
 ���(�, 
>
 ��8(�, 
>
 ��2(�, 
>
 ��7(�, 
>
 ��6(�, 
>
 ��4(�, 
>
��6(�, 
?
 ��4(�, 
?
 ��8(�, 
?
 ���(�, 
?
 ��7(�, 
?
 ��2(�, 
?
 ��5(�, 
?
 ��3(�, 
?
��7(�, 
@
 ��8(�, 
@
 ��4(�, 
@
 ��3(�, 
@
 ��6(�, 
@
 ��3(�, 
@
 ��2(�, 
@
 ���(�, 
@
��8(�, 
)
 ��7(�, 
)
 ��6(�, 
)
 ��5(�, 
)
 ��4(�, 
)
 ��3(�, 
)
 ���(�, 
0
 ��2(�, 
)0
⎠
⎟⎟
⎟⎟
⎟⎟
⎞

 

 

To record the matrix A, compact abbreviations for the 

notation # R���Q (� + 
�
, �
� − 
$�S were used. 

Note that the transition from a non-equidistant 
approximation to a non-equidistant approximation is due to 
the use of relations (2) and (7) in the formation of matrix A. 
In particular, the use of relation (2) brings the matrix to a 
dianonal form. 

To solve the system, software was developed and model 
calculations of phonon dispersion [10] in equidistant (Fig. 3) 
and non-equidistant (Fig. 4) approximations for the force field 
were carried out [9].  

 

Fig. 3. Phonon spectra of the BaTiO3 crystal in the equidistant 
approximation. 

 

Analysis of the calculations showed that no complication 
of the force field within the equidistant approximation ensures 
the presence of a non-physical five-fold degeneracy and the 
point R (to demonstrate a wide set of force constants including 
non-physical interactions between atoms and vacancies is 
presented (Table 1)) . At the same time, the non-equivalent 
approximation for the force field removes the unphysical 
degeneracy at the point R when type-dependent force 
constants are introduced at the distances [1,1,0], [2,0,0], etc. 

 

TABLE I.  FORCE CONSTANTS ΑN (N/M) [X-VACANCY] 

1 | Distance [1,0,0]:  [[[Ti, O], 220], [[Ba, X], 220], [[Ti, X], 220], 

[[O, X], 220], [[X, X], 220]] 

 2 | Distance [1,1,0]:  [[[Ba, O], 110], [[O, O], 110], [[Ba, X], 110], 

[[Ti, X], 110], [[O, X], 110], [[X, X], 110]] 

 3 | Distance [1,1,1]: [[[Ba, Ti], 10], [[Ba, X], 10], [[Ti, X], 10], [[O, 

X], 10], [[X, X], 10]] 

4 | Distance [2,0,0]:  [[[Ba, Ba], 5], [[Ti, Ti], 5], [[O, O], 5], [[Ba, X], 

5], [[Ti, X], 5], [[O, X], 5], [[X, X], 5]] 

5 | Distance [2,1,0]: [[[Ti, O], 3.5], [[Ba, X], 3.5], [[Ti, X], 3.5], [[O, 

X], 3.5], [[X, X], 3.5]] 

6 | Distance [2,1,1]:  [[[Ba, O], 2], [[O, O], 2], [[Ba, X], 2], [[Ti, X], 

2], [[O, X], 2], [[X, X], 2]] 

7 | Distance [2,2,0]:  [[[Ba, Ba], 1], [[Ti, Ti], 1], [[O, O], 1], [[Ba, X], 

1], [[Ti, X], 1], [[O, X], 1], [[X, X], 1]]  

8 | Distance [2,2,1]:  [[[Ti, O], 0.5], [[Ba, X], 0.5], [[Ti, X], 0.5], [[O, 

X], 0.5], [[X, X], 0.5]]  

 9 | Distance [2,2,2]: [[[Ti, O], 0.25], [[Ba, X], 0.25], [[Ti, X], 0.25], 

[[O, X], 0.25], [[X, X], 0.25]]  
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Fig. 4. Phonon spectra of the BaTiO3 crystal in the equidistant 
approximation. 

TABLE II.  FORCE CONSTANTS ΑN (N/M) [X-VACANCY] 

1 | Distance [1,0,0]:  [Ti, O], 220 

 2 | Distance [1,1,0]:  [[Ba, O], 105], [[O, O], 115]],  

 3 | Distance [1,1,1]: [Ba, Ti], 10], 

4 | Distance [2,0,0]:  [[Ba, Ba], 7], [[Ti, Ti], 6], [[O, O], 5]], 

5 | Distance [2,1,0]: [Ti, O], 3.5], 

6 | Distance [2,1,1]:  [[Ba, O], 2], [[O, O], 1], 

7 | Distance [2,2,0]:  [[Ba, Ba], 1], [[Ti, Ti], 0.7], [[O, O], 0.5]] 

8 | Distance [2,2,1]:  [Ti, O], 0.25],  

 9 | Distance [2,2,2]: [[Ti, O], 0.125]], 

III. CONCLUSIONS 

It is shown that depending on the choice of the equidistant 
approximation [3,4] (the force constants are determined only 
by the distance between the positions of different orbits and 
do not depend on the type of interacting atoms) and the non-
equidistant approximation for the force constants αn (the force 
constants also depend on the type of interacting atoms) the 
calculated model phonon spectra of BaTiO3 crystals 
satisfactorily describe the values of the experimental data in 

the center of the Brillouin zone (G(Г)). At the same time, 
calculations in the equidistant approximation lead to a 
nonphysical five-fold degeneracy at the point R (the value 
near 25 THz), which is removed at transition to non-
equivalent approximation. 
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